Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020R1F1A1A01072197).
References
- S.-Y. Ha, S. Hwang, D. Kim, S. Kim, and C. Min, Emergent behaviors of a first-order particle swarm model on the hyperboloid, J. Math. Phys. 61 (2020), no. 4, 042701, 23 pp. https://doi.org/10.1063/1.5066255
- S.-Y. Ha, D. Kim, D. Kim, and W. Shim, Flocking dynamics of the inertial spin model with a multiplicative communication weight, J. Nonlinear Sci. 29 (2019), no. 4, 1301-1342. https://doi.org/10.1007/s00332-018-9518-2
- H. Huh and D. Kim, Emergence of velocity alignment for the inertial spin model with the spin-velocity interaction, Preprint.
- T. K. Karper and F. Weber, A new angular momentum method for computing wave maps into spheres, SIAM J. Numer. Anal. 52 (2014), no. 4, 2073-2091. https://doi.org/10.1137/13094
- J. Shatah and M. Struwe, Geometric Wave Equations, Courant Lecture Notes in Mathematics, 2, New York University, Courant Institute of Mathematical Sciences, New York, 1998.
- F. Weber, A constraint-preserving finite difference method for the damped wave map equation to the sphere, in Theory, numerics and applications of hyperbolic problems. II, 643-654, Springer Proc. Math. Stat., 237, Springer, Cham., 2018. https://doi.org/10.1007/978-3-319-91548-7