DOI QR코드

DOI QR Code

Ingestion of Polystyrene Microplastics Acutely Induces Oxidative Stress in the Marine Medaka Oryzias javanicus

  • Nam, Sang-Eun (Department of Marine Science, College of Natural Sciences, Incheon National University) ;
  • Jung, Jee-Hyun (Risk Assessment Research Center, Korea Institute of Ocean Science and Technology) ;
  • Rhee, Jae-Sung (Department of Marine Science, College of Natural Sciences, Incheon National University)
  • Received : 2021.04.02
  • Accepted : 2021.05.08
  • Published : 2021.05.31

Abstract

Larvae from the marine medaka fish Oryzias javanicus were exposed with polystyrene microplastics (MPs) for 24 h. Exposure to waterborne fluorescent MPs showed clear ingestion and egestion in feces. Under constant MPs, the concentration of dissolved oxygen significantly decreased in 24 h compared to the control. Significant intracellular reactive oxygen species and malondialdehyde contents were detected in larvae, indicating oxidative stress and lipid peroxidation. Significant elevations in mRNA expressions of heat shock protein 70 and antioxidant defense system genes (glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) were measured with increases in enzymatic activity of oxidative stress-related proteins. Taken together, the alterations to the molecular and biochemical components suggested that waterborne MPs had an oxidative stress effect on marine medaka larvae.

Keywords

References

  1. Andrady AL. 2011. Microplastics in the marine environment. Mar Pollut Bull 62: 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  2. Assas M, Qiu X, Chen K, Ogawa H, Xu H, Shimasaki Y, Oshima Y. 2020. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. Mar Pollut Bull 158: 111446. https://doi.org/10.1016/j.marpolbul.2020.111446
  3. Barbosa F, Adeyemi JA, Bocato MZ, Comas A, Campiglia A. 2020. A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: from the detection to the toxicological assessment. Environ Res 182: 109089. https://doi.org/10.1016/j.envres.2019.109089
  4. Besseling E, Quik JTK, Sun M, Koelmans AA. 2017. Fate of nanoand microplastic in freshwater systems: a modeling study. Environ Pollut 220: 540-548. https://doi.org/10.1016/j.envpol.2016.10.001
  5. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45: 9175-9179. https://doi.org/10.1021/es201811s
  6. Cong Y, Jin F, Tian M, Wang J, Shi H, Wang Y, Mu J. 2019. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 228: 93-100. https://doi.org/10.1016/j.chemosphere.2019.04.098
  7. Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frere L, Robbens J, Vethaak AD. 2015. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull 98: 179-187. https://doi.org/10.1016/j.marpolbul.2015.06.051
  8. Driedger AGJ, Durr HH, Mitchell K, Van Cappellen P. 2015. Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41: 9-19. https://doi.org/10.1016/j.jglr.2014.12.020
  9. Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  10. Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci Adv 3: 25-29.
  11. Gouin T. 2020. Toward an improved understanding of the ingestion and trophic transfer of microplastic particles: critical review and implications for future research. Environ Toxicol Chem 39: 1119-1137. https://doi.org/10.1002/etc.4718
  12. Grasshoff K, Ehrhardt M, Kremling K. 1983. Methods of Seawater Analysis. second ed. Verlag Chemie GmbH. Weinheim.
  13. Hahn ME, Woodin BR, Stegeman JJ, Tillitt DE. 1998. Aryl hydrocarbon receptor function in early vertebrates: inducibility of cytochrome P450 1A in agnathan and elasmobranch fish. Comp Biochem Physiol C 120: 67-75.
  14. Hamer J, Gutow L, Kohler A, Saborowski R. 2014. Fate of microplastics in the marine isopod Idotea emarginata. Environ Sci Technol 48: 13451-13458. https://doi.org/10.1021/es501385y
  15. Inoue K, Takei Y. 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19: 727-734. https://doi.org/10.2108/zsj.19.727
  16. Ivar do Sul JA, Costa MF. 2014. The present and future of microplastic pollution in the marine environment. Environ Pollut 185: 352-364. https://doi.org/10.1016/j.envpol.2013.10.036
  17. Jamieson AJ, Brooks LSR, Reid WDK, Piertney SB, Narayanaswamy BE, Linley TD. 2019 Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci 6: 180667. https://doi.org/10.1098/rsos.180667
  18. Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA. 2014. Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48: 1638-1645. https://doi.org/10.1021/es404295e
  19. Kim BM, Jo YJ, Lee N, Lee N, Woo S, Rhee JS, Yum S. 2018. Bisphenol A induces adistinct transcriptome profile in the male fish of the marine medaka Oryzias javanicus. BioChip J 12: 25-37. https://doi.org/10.1007/s13206-017-2104-0
  20. Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68: 253-278. https://doi.org/10.1146/annurev.physiol.68.040104.110001
  21. Mattsson K, Hansson LA, Cedervall T. 2015. Nano-plastics in the aquatic environment. Environ Sci: Process Impacts 17: 1712-1721. https://doi.org/10.1039/C5EM00227C
  22. Nam SE, Saravanan M, Rhee JS. 2020. Benzo[a]pyrene constrains embryo development via oxidative stress induction and modulates the transcriptional responses of molecular biomarkers in the marine medaka Oryzias javanicus. J Environ Sci Health A 55: 1050-1058. https://doi.org/10.1080/10934529.2020.1767452
  23. Napper IE, Bakir A, Rowland SJ, Thompson RC. 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99: 178-185. https://doi.org/10.1016/j.marpolbul.2015.07.029
  24. Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW. 2002. Oxidative stress in ecotoxicology: From the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54: 419-423. https://doi.org/10.1016/S0141-1136(02)00146-0
  25. Setala O, Fleming-Lehtinen V, Lehtiniemi M. 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185: 77-83. https://doi.org/10.1016/j.envpol.2013.10.013
  26. Thompson RC. 2015. Microplastics in the marine environment: sources. Conseq Solut 185-200.
  27. Wang J, Li Y, Lu L, Zheng M, Zhang X, Tian H, Wang W, Ru S. 2019. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ Pollut 254: 113024. https://doi.org/10.1016/j.envpol.2019.113024
  28. Weber A, Scherer C, Brennholt N, Reifferscheid G, Wagner M. 2018. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ Pollut 234: 181-189. https://doi.org/10.1016/j.envpol.2017.11.014