DOI QR코드

DOI QR Code

Synthesis of hairpin DNA mediated Au-Ag bimetallic nanomushrooms for antibacterial application

  • Fu, Jingtai (School of Chemistry, Sun Yat Sen University) ;
  • Huang, Lu (School of Chemistry, Sun Yat Sen University) ;
  • Yu, Zhongning (School of Chemistry, Sun Yat Sen University) ;
  • Zhang, Zhuomin (School of Chemistry, Sun Yat Sen University) ;
  • Li, Gongke (School of Chemistry, Sun Yat Sen University)
  • Received : 2020.01.04
  • Accepted : 2021.05.11
  • Published : 2021.07.25

Abstract

Precise control of the synthesis of bimetallic nanoparticles with specific morphology and structure is of great significance due to their excellent catalytic, optical and biological property. DNA molecules are considered as a kind of efficient templates to mediate the precise synthesis of bimetallic nanoparticles with homogeneous morphology due to their specific and controllable structure. In this study specific hairpin DNA strands were successfully utilized as templates to mediate the synthesis of special mushroom-like Au-Ag bimetallic nanoparticles with a high yield of > 90%. Several key factors greatly influencing the precise control of the morphology and UV-Vis characteristics of the proposed Au-Ag nanomushrooms during synthesis were investigated and optimized in detail, including the structure of template DNA, loading amounts of DNA, types of reductant agents and surfactants. Then, the formation mechanism of hairpin DNA mediated Au-Ag nanomushrooms was studied. Finally, the proposed Au-Ag nanomushrooms with good biocompatibility were applied for the antibacterial study by the growth curve of E. coli. The proposed Au-Ag nanomushrooms showed the effective inhibition capability for the growth of E. coli. The results suggested that these DNA mediated Au-Ag nanomushrooms possessed great potential applications for biomedical science in future.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 22074161 and 21976213), Guangdong Basic and Applied Basic Research Foundation (No.2019A1515010107), the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (No. 2019B020211001), the Science and Technology Planning Project of Guangzhou City (No. 202102080167), and National Key Research and Development Program of China (No. 2019YFC1606101), respectively.

References

  1. Berahim, N., Basirun, W.J., Leo, B.F. and Johan, M.R. (2018), "Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol", Catalysts, 8(10), 412. https://doi.org/10.3390/catal8100412.
  2. Bhamidipati, M. and Fabris, L. (2017), "Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: The role of size, shape, and surface chemistry", Bioconjugate Chem., 28(2), 449-460. https://doi.org/10.1021/acs.bioconjchem.6b00605.
  3. Chen, Z., Liu, C., Cao, F., Ren, J. and Qu, X. (2018), "DNA metallization: principles, methods, structures, and applications", Chem. Soc. Rev., 47(11), 4017-4072. https://xs.scihub.ltd/10.1039/C8CS00011E.
  4. Chi, M., Wang, C., Lei, Y., Wang, G., Li, D., More, K.L., Lupini, A., Allard, L.F., Markovic, N.M. and Stamenkovic, V.R. (2015), "Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing", Nature Commun., 6, 8925. https://xs.scihub.ltd/https://doi.org/10.1038/ncomms9925.
  5. Da Silva, A.G.M., Rodrigues, T.S., Haigh, S.J. and Camargo, P.H.C. (2017), "Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications", Chem. Commun., 53(53), 7135-7148. https://xs.scihub.ltd/10.1039/C7CC02352A.
  6. Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds, R.A., Letsinger, R.L., Elghanian, R. and Viswanadham, G. (2000), "A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles", Anal. Chem., 72(22), 5535-5541. https://pubs.acs.org/doi/10.1021/ac0006627.
  7. Fan, Z. and Zhang, H. (2016), "Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Accounts of chemical research", Accounts Chem. Res., 49(12), 2841-2850. https://doi.org/10.1021/acs.accounts.6b00527.
  8. Fu, J., Zhang, Z. and Li, G. (2019), "Progress on the development of DNA-mediated metal nanomaterials for environmental and biological analysis", Chinese Chem. Lett., 30(2), 285-291. https://doi.org/10.1016/j.cclet.2018.10.031.
  9. Gilroy, K.D., Ruditskiy, A., Peng, H., Qin, D. and Xia, Y. (2016), "Bimetallic nanocrystals: Syntheses, properties, and applications", Chem. Rev., 116(18), 10414-10472. https://doi.org/10.1021/acs.chemrev.6b00211.
  10. Gu, H.W., Yang, Z.M., Gao, J.H., Chang, C.K., and Xu, B. (2005), "Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules", J. Am. Chem. Soc., 127(1), 34-35. https://doi.org/10.1021/ja045220h.
  11. Guo, R., Yin, F., Sun, Y., Mi, L., Shi, L., Tian, Z. and Li, T. (2018), "Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors", ACS Appl. Mater. Interfac., 10(30), 25770-25778. https://doi.org/10.1021/acsami.8b06757.
  12. Habibi, M.H., Kamrani, R. and Mokhtari, R. (2010), "Fabrication and characterization of copper nanoparticles using thermal reduction: The effect of nonionic surfactants on size and yield of nanoparticles", Microchim. Acta. 171(1-2), 91-95. https://doi.org/10.1007/s00604-010-0413-2.
  13. Han, L., Li, C., Zhang, T., Lang, Q. and Liu, A. (2015), "Au@ Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH", ACS Appl. Mater. Interfac., 7(26), 14463-14470. https://doi.org/10.1021/acsami.5b03591.
  14. Jawad, M., Ali, S., Waseem, A., Rabbani, F., Amin, B.A.Z., Bilal, M. and Shaikh, A.J. (2019), "Plasmonic effects and size relation of gold-platinum alloy nanoparticles", Adv. Nano Res., 7(3), 167-178. https://doi.org/10.12989/anr.2019.7.3.167.
  15. Kim, S.J., Choi, S.J., Jang, J.S., Cho, H.J., Koo, W.T., Tuller, H.L. and Kim, I.D. (2017), "Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers", Adv. Mater., 29(36), 1700737. https://doi.org/10.1002/adma.201700737.
  16. Lee, J.H., Kim, G.H. and Nam, J.M. (2012), "Directional synthesis and assembly of bimetallic nanosnowmen with DNA", J. Am. Chem. Soc., 134(12), 5456-5459. https://doi.org/10.1021/ja2121525.
  17. Lee, J.H., You, M.H., Kim, G.H. and Nam, J.M. (2014), "Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes", Nano Lett., 14(11), 6217-6225. https://doi.org/10.1021/nl502541u.
  18. Li, J., Zhu, Z., Liu, F., Zhu, B., Ma, Y., Yan, J., Lin, B., Ke, G., Liu, R., Zhou, L., Tu. S. and Yang. C. (2016), "DNA-mediated morphological control of silver nanoparticles", Small, 12(39), 5449-5487. https://doi.org/10.1002/smll.201601338.
  19. Li, S., Wei, T., Tang, M., Chai, F., Qu, F. and Wang, C. (2018), "Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis", Sensor Actuat. B Chem., 255, 1471-1481. https://doi.org/10.1016/j.snb.2017.08.159.
  20. Lim, D., Kim, I. and Nam, J. (2008), "DNA-embedded Au/Ag core-shell nanoparticles", Chem. Commun. (42), 5312-5314. https://xs.scihub.ltd/10.1039/B810195G.
  21. Liz Marzan, L.M. (2006), "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles", Langmuir, 22(1), 32-41. https://doi.org/10.1021/la0513353.
  22. Lu, X., Tao, L., Song, D., Li, Y. and Gao, F. (2018), "Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides", Sensor Actuat. B Chem., 255, 2575-2581. https://doi.org/10.1016/j.snb.2017.09.063.
  23. Ma, X., Huh, J., Park, W., Lee, L.P., Kwon, Y. J. and Sim, S.J. (2016), "Gold nanocrystals with DNA-directed morphologies", Nature Commun., 7(1), 1-8. https://doi.org/10.1038/ncomms12873.
  24. Ma, Y., Wu, X. and Zhang, G. (2017), "Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study", Appl. Catal. B Environ., 205, 262-270. https://doi.org/10.1016/j.apcatb.2016.12.025.
  25. Madsen, M. and Gothelf, K.V. (2019), "Chemistries for DNA nanotechnology", Chem. Rev., 119(10), 6384-6458. https://doi.org/10.1021/acs.chemrev.8b00570.
  26. Mandal, R., Baranwal, A., Srivastava, A. and Chandra, P. (2018), "Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles", Biosens. Bioelectron., 117, 546-561. https://doi.org/10.1016/j.bios.2018.06.039.
  27. Martinsson, E., Shahjamali, M.M., Large, N., Zaraee, N., Zhou, Y., Schatz, G.C., Mirkin, C.A. and Aili, D. (2016), "Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles", Small, 12(3), 330-342. https://doi.org/10.1002/smll.201502449.
  28. Niu, Z., Cui, F., Yu, Y., Becknell, N., Sun, Y., Khanarian, G., Kim, D., Dou, L., Dehestani, A., Schierle Arndt, K. and Yang. P. (2017), "Ultrathin epitaxial Cu@ Au core-shell nanowires for stable transparent conductors", J. Am. Chem. Soc., 139(21), 7348-7354. https://doi.org/10.1021/jacs.7b02884.
  29. Satyavolu, N.S.R., Tan, L.H. and Lu, Y. (2016), "DNA-mediated morphological control of Pd-Au bimetallic nanoparticles", J. Am. Chem. Soc., 138(50), 16542-16548. https://doi.org/10.1021/jacs.6b10983.
  30. Satyavolu, N.S.R., Loh, K.Y., Tan, L.H. and Lu, Y. (2019), "Discovery of and insights into DNA "codes" for tunable morphologies of metal nanoparticles", Small, 15(26), 1900975. https://doi.org/10.1002/smll.201900975.
  31. Shen, J., Su, J., Yan, J., Zhao, B., Wang, D., Wang, S., Li, K., Liu, M., He, Y., Mathur, S., Fan, C. and Song, S. (2015), "Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification", Nano Res., 8(3), 731-742. https://doi.org/10.1007/s12274-014-0556-2.
  32. Song, T., Tang, L., Tan, L. H., Wang, X., Satyavolu, N. S. R., Xing, H., Wang, Z., Li, J., Liang, H. and Lu, Y. (2015), "DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds", Angew. Chem. Int. Edit., 54(28), 8114-8118. https://doi.org/10.1002/anie.201500838.
  33. Su, J., Wang, D., Norbel, L., Shen, J., Zhao, Z., Dou, Y., Peng, T., Shi, J., Mathur, S., Fan C. and Song, S. (2017), "Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection", Anal. Chem., 89(4), 2531-2538. https://doi.org/10.1021/acs.analchem.6b04729.
  34. Tan, L.H., Yue, Y., Satyavolu, N.S.R., Ali, A.S., Wang, Z., Wu, Y. and Lu, Y. (2015), "Mechanistic insight into DNA-guided control of nanoparticle morphologies", J. Am. Chem. Soc., 137(45), 14456-14464. https://doi.org/10.1021/jacs.5b09567.
  35. Taylor, A.K., Perez, D.S., Zhang, X., Pilapil, B.K., Engelhard, M.H., Gates, B.D. and Rider, D.A. (2017), "Block copolymer templated synthesis of Ptlr bimetallic nanocatalysts for the formic acid oxidation reaction", J. Mater. Chem. A, 5(40), 21514-21527. https://xs.scihub.ltd/10.1039/C7TA06458F.
  36. Wang, H., Qiao, X., Chen, J., Wang, X. and Ding, S. (2005), "Mechanisms of PVP in the preparation of silver nanoparticles", Mater. Chem. Phys., 94(2-3), 449-453. https://doi.org/10.1016/j.matchemphys.2005.05.005.
  37. Wang, Z., Zhang, J., Ekman, J. M., Kenis, P.J. and Lu, Y. (2010), "DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers", Nano Lett., 10(5), 1886-1891. https://doi.org/10.1021/nl100675p.
  38. Wang, P., Lin, Z., Su, X. and Tang, Z. (2017), "Application of Au based nanomaterials in analytical science", Nano Today, 12, 64-97. https://doi.org/10.1016/j.nantod.2016.12.009.
  39. Xia, Y., Gilroy, K.D., Peng, H.C. and Xia, X. (2017), "Seed-mediated growth of colloidal metal nanocrystals", Angew. Chem. Int. Edit., 56(1), 60-95. https://doi.org/10.1002/anie.201604731.
  40. Yatsunyk, L.A., Mendoza, O. and Mergny, J. (2014), ""Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices", Accounts Chem. Res., 47(6), 1836-1844. https://doi.org/10.1021/ar500063x.
  41. Yin, Z., Wang, Y., Song, C., Zheng, L., Ma, N., Liu, X., Li, S., Lin, L., Li, M., Xu, Y., Li, W., Hu, G., Fang, Z. and Ma, D. (2018), "Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering", J. Am. Chem. Soc., 140(3), 864-867. https://doi.org/10.1021/jacs.7b11293.
  42. Zaleska Medynska, A., Marchelek, M., Diak, M. and Grabowska, E. (2016), "Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties", Adv. Colloid. Interfac., 229, 80-107. https://doi.org/10.1016/j.cis.2015.12.008.
  43. Zhang, Z., Zhao, B. and Hu, L. (1996), "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", J. Solid St. Chem., 121(1), 105-110. https://doi.org/10.1006/jssc.1996.0015.
  44. Zhang, Y., Yang, P., Habeeb Muhammed, M.A., Alsaiari, S.K., Moosa, B., Almalik, A., Kumar, A., Ringe, E. and Khashab, N.M. (2017), "Tunable and linker free nanogaps in core-shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS. ACS applied materials & interfaces", ACS Appl. Mater. Interfac., 9(43), 37597-37605. https://doi.org/10.1021/acsami.7b10959.
  45. Zhang, Y., Wang, G., Yang, L., Wang, F. and Liu, A. (2018), "Recent advances in gold nanostructures based biosensing and bioimaging", Coordination Chem. Rev., 370, 1-21. https://doi.org/10.1016/j.ccr.2018.05.005.
  46. Zhang, Z., Gao, J., Yu, Z. and Li, G. (2019), "Synthesis of tunable DNA-directed trepang-like Au nanocrystals for imaging application", Nanoscale, 11(39), 18099-18108. https://xs.scihub.ltd/10.1039/C9NR06375G.
  47. Zhao, J., Long, L., Weng, G., Li, J., Zhu, J. and Zhao, J. (2017), "Multi-branch Au/Ag bimetallic core-shell-satellite nanoparticles as a versatile SERS substrate: The effect of Au branches in a mesoporous silica interlayer", J. Mater. Chem. C, 5(48), 12678-12687. https://xs.scihub.ltd/10.1039/C7TC03788K.