DOI QR코드

DOI QR Code

POD-based analysis of time-resolved tornado-like vortices

  • Wang, Mengen (College of Civil Engineering, Tongji University) ;
  • Cao, Shuyang (College of Civil Engineering, Tongji University) ;
  • Cao, Jinxin (College of Civil Engineering, Tongji University)
  • Received : 2021.01.20
  • Accepted : 2021.06.28
  • Published : 2021.07.25

Abstract

In this study, three representative configurations of tornado-like vortices, i.e., single vortex, vortex breakdown and multi-vortex, are numerically simulated using large-eddy simulation (LES). Proper orthogonal decomposition (POD) is firstly employed to decompose flow-field snapshots into a series of orthogonal flow patterns (POD modes) and time-dependent coefficients. Then, a conditional-average analysis is conducted to obtain the four kinds of conditionally-averaged flow fields, which are then compared with instantaneous and ensemble-averaged flow fields. Next, a quadruple POD analysis is performed to decompose the instantaneous flow field into mean, coherent, transition and noise components. Finally, a qualitative analysis is implemented for unsteady vortex motions in horizontal and vertical planes. Results show that the conditional average shows larger-scale coherent structures than the classical ensemble average, while it loses the small-scale turbulent fluctuations present in instantaneous flow. The tornado vortex structure is controlled by the mean component in the single-vortex stage. With increase in swirl ratio, the tornado vortex evolves from single-vortex, to vortex-breakdown to multi-vortex, companied by kinetic energy transference to coherent and transition components. The horizontal and vertical vortex motions are essentially the results of horizontal and vertical velocity perturbations.

Keywords

Acknowledgement

This research was co-funded in part by the National Natural Science Foundation of China (NSFC) Grant NO. 52078382, 51878503, 51878504, 51720105005 and State Key Laboratory of Disaster Reduction in Civil Engineering Grant NO. SLDRCE19-A-01.

References

  1. Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172, https://doi.org/10.1016/j.jweia.2019.02.010.
  2. Buhl, S., Hartmann, F. and Hasse, C. (2015), "Identification of large-scale structure fluctuations in IC engines using PODbased conditional averaging", Oil Gas Sci. Technol. Revue d'IFP Energies Nouvelles, 71(1), https://doi.org/10.2516/ogst/2015021.
  3. Cao, J.X., Ren, S.L., Cao, S.Y. and Ge, Y.J. (2019), "Physical simulations on wind loading characteristics of streamlined bridge decks under tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 56-70, https://doi.org/10.1016/j.jweia.2019.03.019.
  4. Cao, S., Wang, J., Cao, J., Zhao, L. and Chen, X. (2015), "Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices", J. Wind Eng. Ind. Aerod., 145, 75-86, https://doi.org/10.1016/j.jweia.2015.06.004.
  5. Cao, S.Y., Wang, M.E., Zhu, J.W., Cao, J.X., Tamura, T. and Yang, Q.S. (2018), "Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics", Wind Struct. 26(3), 115-128, https://doi.org/10.12989/was.2018.26.3.115.
  6. Cheng, Z.P., Qiu, S.Y., Xiang, Y. and Liu, H. (2019), "Quantitative features of wingtip vortex wandering based on the linear stability analysis", AIAA J., 57(7), 2694-2709, https://doi.org/10.2514/1.J057693.
  7. Church, C.R., Snow, J.T. and Agee, E.M. (1977), "Tornado vortex simulation at Purdue-University", Bull. Amer. Meteor. Soc., 58(9), 900-908, https://doi.org/10.1175/15200477(1977)058<0900:Tvsapu>2.0.Co;2.
  8. Devenport, W.J., Rife, M.C., Liapis, S.I. and Follin, G.J. (2006), "The structure and development of a wing-tip vortex", J. Fluid Mech., 312, 67-106, https://doi.org/10.1017/s0022112096001929.
  9. Edstrand, A.M., Davis, T.B., Schmid, P.J., Taira, K. and Cattafesta, L.N. (2016), "On the mechanism of trailing vortex wandering", J. Fluid Mech., 801, https://doi.org/10.1017/jfm.2016.440.
  10. Fang, G., Pang, W., Zhao, L., Rawal, P., Cao, S. and Ge, Y. (2021), "Toward a refined estimation of typhoon wind hazards: Parametric modeling and upstream terrain effects", J. Wind Eng. Ind. Aerod., 209, https://doi.org/10.1016/j.jweia.2020.104460.
  11. Fiedler, B. (2009), "Suction vortices and spiral breakdown in numerical simulations of tornado-like vortices", Atmos. Sci. Lett., 10(2), 109-114, https://doi.org/10.1002/asl.217.
  12. Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48, https://doi.org/10.1016/j.jweia.2018.12.013.
  13. Gao, R., Shen, L., Teh, K.Y., Ge, P., Zhao, F. and Hung, D.L.S. (2019), "Effects of outlier flow field on the characteristics of incylinder coherent structures identified by proper orthogonal decomposition-based conditional averaging and quadruple proper orthogonal decomposition", J. Eng. Gas Turbines Power. 141(8), https://doi.org/10.1115/1.4043307.
  14. Ge, P. and Hung, D.L.S. (2017), "Investigation of cycle-to-cycle variation of in-cylinder engine swirl flow fields using quadruple proper orthogonal decomposition", J. Eng. Gas Turbines Power. 139(7), https://doi.org/10.1115/1.4035628.
  15. Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159, https://doi.org/10.1016/j.engstruct.2007.07.010.
  16. Hamada, A. and El Damatty, A.A. (2015), "Failure analysis of guyed transmission lines during F2 tornado event", Eng. Struct., 85, 11-25, https://doi.org/10.1016/j.engstruct.2014.11.045.
  17. Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at western university, Canada", Wind Engineers, JAWE. 39(4), 350-351, https://doi.org/10.5359/jawe.39.350.
  18. Hangan, H. and Kim, J.D. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct. 11(4), 291-302, https://doi.org/10.12989/was.2008.11.4.291.
  19. Iudiciani, P., Duwig, C., Husseini, S.M., Szasz, R.Z., Fuchs, L. and Gutmark, E.J. (2012), "Proper orthogonal decomposition for experimental investigation of flame instabilities", AIAA J., 50(9), 1843-1854, https://doi.org/10.2514/1.J051297.
  20. Iungo, G.V., Skinner, P. and Buresti, G. (2009), "Correction of wandering smoothing effects on static measurements of a wingtip vortex", Experim. Fluids. 46(3), 435-452, https://doi.org/10.1007/s00348-008-0569-2.
  21. Karami, M., Hangan, H., Carassale, L. and Peerhossaini, H. (2019), "Coherent structures in tornado-like vortices", Phys. Fluids. 31(8), https://doi.org/10.1063/1.5111530.
  22. Kashani, A.G., Crawford, P.S., Biswas, S.K., Graettinger, A.J. and Grau, D. (2015), "Automated Tornado Damage Assessment and Wind Speed Estimation Based on Terrestrial Laser Scanning", J. Comput. Civil Eng., 29(3), https://doi.org/10.1061/(asce)cp.1943-5487.0000389.
  23. Kuai, L., Haan, F.L., Jr., Gallus, W.A., Jr. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct. 11(2), 75-96, https://doi.org/10.12989/was.2008.11.2.075.
  24. Liu, Z.Q. and Ishihara, T. (2015), "Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations", J. Wind Eng. Ind. Aerod., 145 42-60, https://doi.org/ 10.1016/j.jweia.2015.05.008.
  25. Liu, Z.Q., Liu, H.P. and Cao, S.Y. (2018), "Numerical study of the structure and dynamics of a tornado at the sub-critical vortex breakdown stage", J. Wind Eng. Ind. Aerod., 177, 306-326, https://doi.org/10.1016/j.jweia.2018.04.009.
  26. Neumayer, E. and Barthel, F. (2011), "Normalizing economic loss from natural disasters: A global analysis", Global Environ. Change, 21(1), 13-24, https://doi.org/10.1016/j.gloenvcha.2010.10.004.
  27. Qin, W., Xie, M., Jia, M., Wang, T. and Liu, D. (2014), "Analysis of in-cylinder turbulent flows in a DISI gasoline engine with a proper orthogonal decomposition quadruple decomposition", J. Eng. Gas Turbines Power. 136(11), https://doi.org/10.1115/1.4027658.
  28. Qin, W., Xie, M., Jia, M., Wang, T. and Liu, D. (2014), "Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: Cyclic variation and effect of valve lift", Sci. China Technol. Sci., 57(3), 489-504, https://doi.org/10.1007/s11431-014-5472-x.
  29. Razavi, A. and Sarkar, P.P. (2018), "Tornado-induced wind loads on a low-rise building: Influence of swirl ratio, translation speed and building parameters", Eng. Struct., 167, 1-12, https://doi.org/10.1016/j.engstruct.2018.03.020.
  30. Refan, M. and Hangan, H. (2016), "Characterization of tornadolike flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121, https://doi.org/10.1016/j.jweia.2016.02.002.
  31. Roudnitzky, S., Druault, P. and Guibert, P. (2006), "Proper orthogonal decomposition of in-cylinder engine flow into mean component, coherent structures and random Gaussian fluctuations", J. Turbulence. 7, https://doi.org/10.1080/14685240600806264.
  32. Rulli, F., Fontanesi, S., d'Adamo, A. and Berni, F. (2019), "A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines", Int. J. Engine Res., https://doi.org/10.1177/1468087419836178.
  33. Suzuki, M. and Okura, N. (2016), "Study of aerodynamic forces acting on a train using a tornado simulator", Mech. Eng. Lett., 2(0), 16-00505-00516-00505, https://doi.org/10.1299/mel.16-00505.
  34. Tamura, Y. and Cao, S. (2012), "International group for windrelated disaster risk reduction (IG-WRDRR)", J. Wind Eng. Ind. Aerod., 104-106, 3-11, https://doi.org/10.1016/j.jweia.2012.02.016.
  35. Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2017), "Characteristics of tornado-like vortices simulated in a large-scale ward-type simulator", Bound.-Layer Meteor., 166(2), 327-350, https://doi.org/10.1007/s10546-017-0305-7.
  36. Van Oudheusden, B.W., Scarano, F., Van Hinsberg, N.P. and Watt, D.W. (2005), "Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence", Experiment. Fluids, 39(1), 86-98. https://doi.org/10.1007/s00348-005-0985-5.
  37. Wang, J., Cao, S., Pang, W. and Cao, J. (2016), "Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices", Bound.-Layer Meteor., 162(2), 319-339, https://doi.org/0.1007/s10546-016-0201-6. https://doi.org/10.1007/s10546-016-0201-6
  38. Wang, T., Li, W., Jia, M., Liu, D., Qin, W. and Zhang, X. (2015), "Large-eddy simulation of in-cylinder flow in a DISI engine with charge motion control valve: Proper orthogonal decomposition analysis and cyclic variation", Appl. Thermal Eng., 75, 561-574, https://doi.org/10.1016/j.applthermaleng.2014.10.081.
  39. Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29(6), 1194-1204, https://doi.org/10.1175/15200469(1972)029<1194:Teocfo>2.0.Co;2.
  40. Wurman, J. and Alexander, C.R. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes", Month. Weather Rev., 133(1), 97-119, https://doi.org/10.1175/mwr2856.1.
  41. Zhang, W. and Sarkar, P.P. (2011), "Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)", Experim. Fluids. 52(2), 479-493, https://doi.org/10.1007/s00348-011-1229-5.
  42. Zhuang, H. and Hung, D.L.S. (2016), "Characterization of the effect of intake air swirl motion on time-resolved in-cylinder flow field using quadruple proper orthogonal decomposition", Energy Convers. Manage., 108, 366-376, https://doi.org/10.1016/j.enconman.2015.10.080.