참고문헌
- Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. Part B Eng., 168, 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.
- Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
- Barretta, R. and de Sciarra, F.M. (2019), "Variational nonlocal gradient elasticity for nano-beams", Int. J. Eng. Sci., 143, 73-91. https://doi.org/10.1016/j.ijengsci.2019.06.016.
- Barretta, R., Faghidian, S.A. and De Sciarra, F.M. (2019a), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.
- Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., de Sciarra, F.M. and Medaglia, C.M. (2019b), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.
- Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M. and Ruta, G. (2020), "Buckling loads of nano-beams in stress-driven nonlocal elasticity", Mech. Adv. Mater. Struct., 27(11), 869-875. https://doi.org/10.1080/15376494.2018.1501523.
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. http://doi.org/10.12989/scs.2019.33.5.699.
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
- Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., 5(4), 281. https://doi.org/10.12989/anr.2017.5.4.281.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019a), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. http://doi.org/10.12989/anr.2019.7.4.223.
- Ebrahimi, F., Hosseini, S.H.S. and Bayrami, S.S. (2019b), "Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: An analytical study". Thin Wall. Struct., 141, 293-307. https://doi.org/10.1016/j.tws.2019.04.038.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Fatima, F.M. (2020a), "Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads", Struct. Monitor. Maintenance, 7(2), 85-107.http://dx.doi.org/10.12989/smm.2020.7.2.085.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monitor. Maintenance, 7(2), 69-84. http://doi.org/10.12989/smm.2020.7.2.069.
- Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177%2F1077546320923930. https://doi.org/10.1177%2F1077546320923930
- Gholami, R. and Ansari, R. (2018), "Imperfection sensitivity of post-buckling behavior and vibration response in pre-and postbuckled regions of nanoscale plates considering surface effects", Int. J. Appl. Mech., 10(3), 1850027. https://doi.org/10.1142/S1758825118500278.
- Gupta, A. and Talha, M. (2017), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.
- Gupta, A. and Talha, M. (2018a), "Influence of micro-structural defects on post-buckling and large-amplitude vibration of geometrically imperfect gradient plate", Nonlinear Dynam., 94(1), 39-56. https://doi.org/10.1007/s11071-018-4344-5.
- Gupta, A. and Talha, M. (2018b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dynam., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. http://doi.org/10.1016/j.compstruct.2012.09.034.
- Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
- Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
- Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Liang, Y.C., Dou, J.H. and Bai, Q.S. (2007), "Molecular dynamic simulation study of AFM single-wall carbon nanotube tip-surface interactions", Key Eng. Mater., 339, 206-210. https://doi.org/10.4028/www.scientific.net/KEM.339.206.
- Mantari, J.L. and Monge, J.C. (2016), "Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation", Int. J. Mech. Sci., 119, 170-186. https://doi.org/10.1016/j.ijmecsci.2016.10.015.
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://orcid.org/0000-0001-8841-7449. https://doi.org/10.1061/(asce)em.1943-7889.0001519
- Patil, S.A., Shinde, D.V., Patil, D.V., Tehare, K.K., Jadhav, V.V., Lee, J.K., Mane, R.S., Shrestha, N.K. and Han, S.H. (2014), "A simple, room temperature, solid-state synthesis route for metal oxide nanostructures", J. Mater. Chem. A, 2(33), 13519-13526. https://doi.org/10.1039/C4TA02267J.
- Ramirez, D., Cuba, L., Mantari, J.L. and Arciniega, R.A. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Computat. Mech., 5(2), 281-298. https://doi.org/10.22055/JACM.2018.25177.1237.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
- Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
- Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. http://doi.org/10.1016/j.compstruct.2015.01.004.
- Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2016), "Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators", ZAMM J. Appl. Math. Mech. 96(3), 385-400. https://doi.org/10.1002/zamm.201400160.
- Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089.
- Sun, C.T. and Zhang, H. (2003), "Size-dependent elastic moduli of platelike nanomaterials", J. Appl. Phys., 93(2), 1212-1218. https://doi.org/10.1063/1.1530365.
- Thai, H.T. and Choi, D.H. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755- 1771. http://doi.org/10.1007/s00419-013-0776-z.
- Yang, X., Liu, H. and Ma, J. (2020), "Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets", Microsyst. Technol., 26(8), 2535-2551. https://doi.org/10.1007/s00542-020-04794-w.
- Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054.