DOI QR코드

DOI QR Code

The effects of ring and fraction laws: Vibration of rotating isotropic cylindrical shell

  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elbahar, Mohamed (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Elimame, Elaloui (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.10.25
  • Accepted : 2021.04.06
  • Published : 2021.07.25

Abstract

This paper deals with the specific influence of three different fraction laws for vibrational analysis of rotating cylindrical shells. The rotating cylindrical shells are stabilized by ring-stiffeners to increase the stiffness and strength. Isotopic materials are the constituents of these rings. The frequencies are investigated versus circumferential wave number, length- and height-to- radius ratios using three volume fraction laws. Moreover, the effect of rotation speed is investigated. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. When the position of ring supports increases, the backward and forward frequency first increases and obtains its maximum value at the shell mid length position and then decreases and get a bell shape with clamped-clamped and clamped-free conditions. The assessment of present model is judged with the comparison of non-rotating and rotating results with former exploration.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Aliyu, A.I. and Li, Y. (2020), "Bell polynomials and lump-type solutions to the Hirota-Satsuma-Ito equation under general and positive quadratic polynomial functions", Eur. Phys. J. Plus, 135(1), 119. https://doi.org/10.1140/epjp/s13360-019-00054-7.
  2. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Phil. Trans. R. Soc., London, A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
  3. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  4. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  5. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  6. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7(24), 101-111.
  7. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010.
  8. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  9. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-39. https://doi.org/10.12989/anr.2019.7.1.039.
  10. Ergin, A., and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  11. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101(4), 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.
  12. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  13. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  14. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S.
  15. Li, H. and Lam, K. Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  16. Loy, C.T., Lam, K.Y and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  17. Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214 (10), 1313-1328. https://doi.org/10.1243/0954406001523290.
  18. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191(1), 75-91. http/10.1007/s00707-006-0438-0.
  19. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  20. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
  21. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  22. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8.
  23. Sewall, J.L., and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, U.S.A.
  24. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  25. Sharma, C.B. (1974), "Calculation of natural frequencies of fixed-free circular cylindrical shells", J. Sound Vib., 35(1), 55-76. https://doi.org/10.1016/0022-460X(74)90038-8.
  26. Sharma, C.B., Darvizeh, M., and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.
  27. Sharma, P., Singh, R., Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  28. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(2), 198-202. https://doi.org/10.1115/1.2930412.
  29. Srinivasan, A.V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Ind., 93(4), 1229-1232. https://doi.org/10.1115/1.3428067.
  30. Wang S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55(6), 1340- 1342. https://doi.org/10.1121/1.1914708.
  31. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  32. Wang, Y., Fu, T. and Zhang, W. (2021), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400.
  33. Wang, Y., Xie, K., Fu, T. and Zhang, W. (2021), "A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01238-x.
  34. Wang, Y., Zhou, A., Xie, K., Fu, T. and Shi, C. (2020), "Nonlinear static behaviors of functionally graded polymer-based circular microarches reinforced by graphene oxide nanofillers", Results in Phys., 16, 102894. https://doi.org/10.1016/j.rinp.2019.102894
  35. Xiang, S., Li, G.C., Zhang, W. and Yang, M.S. (2012), "Natural frequencies of rotating functionally graded cylindrical shells", Appl. Math. Mech., 33(3), 345-356. https://doi.org/10.1007/s10483-012-1554-6.
  36. Zhang, L., Xiang, Y. and Wei, G.W. (2006), "Local adaptive differential quardrature for free vibration analysis of cylindrical shells with various boundary conditions", Int. J. Mech. Sci., 48(10), 1126-1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005.
  37. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.