Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
References
- Aliyu, A.I. and Li, Y. (2020), "Bell polynomials and lump-type solutions to the Hirota-Satsuma-Ito equation under general and positive quadratic polynomial functions", Eur. Phys. J. Plus, 135(1), 119. https://doi.org/10.1140/epjp/s13360-019-00054-7.
- Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Phil. Trans. R. Soc., London, A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
- Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7(24), 101-111.
- Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-39. https://doi.org/10.12989/anr.2019.7.1.039.
- Ergin, A., and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101(4), 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
- Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S.
- Li, H. and Lam, K. Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
- Loy, C.T., Lam, K.Y and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214 (10), 1313-1328. https://doi.org/10.1243/0954406001523290.
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191(1), 75-91. http/10.1007/s00707-006-0438-0.
- Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
- Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8.
- Sewall, J.L., and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, U.S.A.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, C.B. (1974), "Calculation of natural frequencies of fixed-free circular cylindrical shells", J. Sound Vib., 35(1), 55-76. https://doi.org/10.1016/0022-460X(74)90038-8.
- Sharma, C.B., Darvizeh, M., and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.
- Sharma, P., Singh, R., Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(2), 198-202. https://doi.org/10.1115/1.2930412.
- Srinivasan, A.V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Ind., 93(4), 1229-1232. https://doi.org/10.1115/1.3428067.
- Wang S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55(6), 1340- 1342. https://doi.org/10.1121/1.1914708.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Wang, Y., Fu, T. and Zhang, W. (2021), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400.
- Wang, Y., Xie, K., Fu, T. and Zhang, W. (2021), "A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01238-x.
- Wang, Y., Zhou, A., Xie, K., Fu, T. and Shi, C. (2020), "Nonlinear static behaviors of functionally graded polymer-based circular microarches reinforced by graphene oxide nanofillers", Results in Phys., 16, 102894. https://doi.org/10.1016/j.rinp.2019.102894
- Xiang, S., Li, G.C., Zhang, W. and Yang, M.S. (2012), "Natural frequencies of rotating functionally graded cylindrical shells", Appl. Math. Mech., 33(3), 345-356. https://doi.org/10.1007/s10483-012-1554-6.
- Zhang, L., Xiang, Y. and Wei, G.W. (2006), "Local adaptive differential quardrature for free vibration analysis of cylindrical shells with various boundary conditions", Int. J. Mech. Sci., 48(10), 1126-1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005.
- Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.