DOI QR코드

DOI QR Code

Mechanical analysis of bi-functionally graded sandwich nanobeams

  • Luat, Doan Trac (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Van Thom, Do (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Thanh, Tran Trung (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Van Minh, Phung (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Van Ke, Tran (Department of Solid Mechanics, Le Quy Don Technical University) ;
  • Van Vinh, Pham (Department of Solid Mechanics, Le Quy Don Technical University)
  • Received : 2020.12.14
  • Accepted : 2021.05.08
  • Published : 2021.07.25

Abstract

In this study, the bending, free vibration and buckling analysis of a novel bi-functionally graded sandwich nanobeam are investigated for the first time via a nonlocal refined simple shear deformation theory. The novel sandwich beam consists of one ceramic core and two different functionally graded face sheets, which has a significant potential application in various fields of practical engineering and industry. The Eringen's nonlocal elastic theory has been used in cooperation with a refined simple shear deformation theory as well as Hamilton's principle to derive the equations of motion. Closed-form solution based on Navier's technique is used to solve the equations of motion of simply supported nanobeams. The present numerical results are compared with the available solutions to demonstrate the accuracy of the present theory. The influence of some parameters such as the slender ratio, the power-law index, the skin-core-skin thicknesses and the small-scale parameter on the bending, free vibration and buckling behavior of bi-functionally graded sandwich nanobeams are carried out carefully.

Keywords

References

  1. Ahmed, H.M.S., Aicha, B., Fabrice, B., Abdelouahed, T. and Samy, R.M. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/SCS.2018.28.1.013.
  2. Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2008), "Analytical modeling of sandwich beams with functionally graded core", J. Sandw. Struct. Mater., 10(1), 53-74. https://doi.org/10.1177/1099636207081111.
  3. Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermoelectric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581.
  4. Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  5. Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A Solid, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
  6. Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H, Tounsi, A, Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83. http://dx.doi.org/10.12989/cac.2021.27.1.073.
  7. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/CAC.2019.24.6.579
  8. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/SCS.2020.34.5.643,
  9. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695.
  10. Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481
  11. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/ANR.2019.7.5.351.
  12. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/SSS.2017.19.2.115.
  13. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/SSS.2020.25.2.197.
  14. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A,. Tounsi, A. and Tounsi, A. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/ANR.2019.7.3.191.
  15. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/GAE.2020.21.5.471.
  16. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  17. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/SEM.2019.72.1.061.
  18. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
  19. Hana, B., Adda Bedia, E.A., Amina, B. and Abdelouahed, T. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/ANR.2019.7.5.351.
  20. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/ANR.2019.7.6.431.
  21. Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
  22. Larbi, C.F., Abdelhakim, K., Ahmed, H.M.S., Abdelouahed, T., Anwar, B.O. and Samy, R.M. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425.
  23. Li, W., Ma, H. and Gao, W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.
  24. Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory" Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090.
  25. Mama, A., Ahmed, H.M.S., Adda, B.E.A. and Abdelouahed, T. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/SCS.2016.20.5.963.
  26. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/ANR.2020.8.4.293.
  27. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/SCS.2020.36.3.355.
  28. Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
  29. Nguyen, T.K., Truong-Phong Nguyen, T., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  30. Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
  31. Gao, X.L. and Zhang, G.Y., (2015), "A microstructure- and surface energy-dependent third-order shear deformation beam model", J. Appl. Math. Phys., 66, 1871-1894. https://doi.org/10.1007/s00033-014-0455-0.
  32. Osofero, A.I., Vo, T.P., Nguyen, T.K. and Lee, J. (2015), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.
  33. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A. Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/GAE.2020.22.2.119.
  34. Riadh, B., Ait, A.H. and Abdelouahed, T. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/SCS.2015.19.3.521.
  35. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
  36. Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
  37. Songsuwan, W., Pimsarn, M. and Wattanasakulpong, N. (2018), "Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads", Int. J. Struct. Stabil. Dyn., 18(09), 1850112. https://doi.org/10.1142/S0219455418501122.
  38. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  39. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  40. Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
  41. Vinh, P.V. (2021), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mech. Based Des. Struct., 1, 1-32. https://doi.org/10.1080/15397734.2021.1894948.
  42. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  43. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015a), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  44. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015b), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
  45. Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  46. Yang, G., Wan Shen, X. and Haiping, Z. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/SEM.2019.71.6.669.
  47. Yarasca, J., Mantari, J.L. and Arciniega, R.A. (2016), "Hermite-Lagrangian finite element formulation to study functionally graded sandwich beams", Compos. Struct., 140, 567-581. https://doi.org/10.1016/j.compstruct.2016.01.015.
  48. Zhang, G.Y. and Gao, X.L., (2020), "A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory", Math. Mech. Solids, 25, 630-643. https://doi.org/10.1177/1081286519886003.
  49. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693.
  50. Zine, A, Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/CAC.2020.26.1.063.