참고문헌
- Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
- Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q. U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. https://doi.org/10.12989/cac.2018.22.2.249.
- Asen, F. and Dehestani, M. (2021), "Influence of concrete mix proportions on lifetime flexural load-bearing capacity of RC beams under chloride corrosion of rebars", Struct., 29, 2017-2027. https://doi.org/10.1016/j.istruc.2021.01.009.
- Ashour, A.F. and Alqedra, M.A. (2005), "Concrete breakout strength of single anchors in tension using neural networks", Adv. Eng. Softw., 36(2), 87-97. https://doi.org/10.1016/j.advengsoft.2004.08.001.
- Bal, L. and Buyle-Bodin, F. (2013), "Artificial neural network for predicting drying shrinkage of concrete", Constr. Build. Mater., 38, 248-254. https://doi.org/10.1016/j.conbuildmat.2012.08.043.
- Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2005), "Modeling of time to corrosion-induced cover cracking in reinforced concrete structures", Cement Concrete Res., 35(11), 2203-2218. https://doi.org/10.1016/j.cemconres.2005.06.007.
- Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2008), "Suggested empirical models for corrosion-induced bond degradation in reinforced concrete", J. Struct. Eng., 134(2), 221-230. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(221).
- Cabrera, J.G. (1996), "Deterioration of concrete due to reinforcement steel corrosion", Cement Concrete Compos., 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7.
- Carpenter, W.C. and Hoffman, M.E. (1995), "Training backprop neural networks", AI Exp., 10(3), 30-33.
- Choudhary, G.K. and Dey, S. (2012), "Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks", Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference, October.
- Chung, L., Kim, J.H.J. and Yi, S.T. (2008), "Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars", Cement Concrete Compos., 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006.
- Concha, N. and Oreta, A.W. (2018), "A model for time-to-cracking of concrete due to chloride induced corrosion using artificial neural network", IOP Conf. Ser.: Mater. Sci. Eng., 431(7), 072009. https://doi.org/10.1088/1757-899X/431/7/072009
- Concha, N.C. and Dadios, E.P. (2015), "Optimization of the rheological properties of self compacting concrete using neural network and genetic algorithm", 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), December.
- Concha, N.C. and Oreta, A.W.C. (2019), "Bond strength prediction model of corroded reinforcement in concrete using neural network", Int. J. Geom., 16(54), 55-61. https://doi.org/10.21660/2019.54.4785.
- Dahou, Z., Sbartai, Z.M., Castel, A. and Ghomari, F. (2009), "Artificial neural network model for steel-concrete bond prediction", Eng. Struct., 31(8), 1724-1733. https://doi.org/10.1016/j.engstruct.2009.02.010.
- Desnerck, P., Lees, J.M. and Morley, C.T. (2015), "Bond behaviour of reinforcing bars in cracked concrete", Constr. Build. Mater., 94, 126-136. https://doi.org/10.1016/j.conbuildmat.2015.06.043.
- El Maaddawy, T. and Soudki, K. (2007), "A model for prediction of time from corrosion initiation to corrosion cracking", Cement Concrete Compos., 29(3), 168-175. https://doi.org/10.1016/j.cemconcomp.2006.11.004.
- Garson, G.D. (1991), "Interpreting neural-network connection weights", AI Exp., 6(4), 46-51.
- Goffin, B., Banthia, N. and Yonemitsu, N. (2020), "Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete", Constr. Build. Mater., 263, 120162. https://doi.org/10.1016/j.conbuildmat.2020.120162.
- Haque, M.E. and Sudhakar, K.V. (2001), "Prediction of corrosion-fatigue behavior of DP steel through artificial neural network", Int. J. Fatig., 23(1), 1-4. https://doi.org/10.1016/S0142-1123(00)00074-8.
- Hou, L., Liu, H., Xu, S., Zhuang, N. and Chen, D. (2017), "Effect of corrosion on bond behaviors of rebar embedded in ultra-high toughness cementitious composite", Constr. Build. Mater., 138, 141-150. https://doi.org/10.1016/j.conbuildmat.2017.02.008.
- Ince, R. (2004), "Prediction of fracture parameters of concrete by artificial neural networks", Eng. Fract. Mech., 71(15), 2143-2159. https://doi.org/10.1016/j.engfracmech.2003.12.004.
- Lee, H.S., Noguchi, T. and Tomosawa, F. (2002), "Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion", Cement Concrete Res., 32(8), 1313-1318. https://doi.org/10.1016/S0008-8846(02)00783-4.
- Maurel, O., Dekoster, M. and Buyle-Bodin, F. (2005), "Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies", Comput. Concrete, 2(1), 1-18. https://doi.org/10.12989/cac.2005.2.1.001.
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059
- Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597.
- Park, K.B., Noguchi, T. and Plawsky, J. (2005), "Modeling of hydration reactions using neural networks to predict the average properties of cement paste", Cement Concrete Res., 35(9), 1676-1684. https://doi.org/10.1016/j.cemconres.2004.08.004.
- Qiao, D., Nakamura, H., Yamamoto, Y. and Miura, T. (2016), "Crack patterns of concrete with a single rebar subjected to nonuniform and localized corrosion", Constr. Build. Mater., 116, 366-377. https://doi.org/10.1016/j.conbuildmat.2016.04.149.
- Rao, G.A., Pandurangan, K., Sultana, F. and Eligehausen, R. (2004), "Studies on the pull-out strength of ribbed bars in high-strength concrete", Proceeding of the FraMCos-6 conference. International Association of Fracture Mechanics for Concrete and Concrete Structures, 5, 05-17.
- Rinchon, J.P.M., Concha, N.C. and Calilung, M.G.V. (2017), "Reinforced concrete ultimate bond strength model using hybrid neural network-genetic algorithm", 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), December.
- Saleem, M. (2017), "Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method", Struct. Eng. Mech., 64(4), 427-436. http://doi.org/10.12989/sem.2017.64.4.427.
- Tondolo, F. (2015), "Bond behaviour with reinforcement corrosion", Constr. Build. Mater., 93, 926-932. https://doi.org/10.1016/j.conbuildmat.2015.05.067.
- Wu, F., Gong, J.H. and Zhang, Z. (2014), "Calculation of corrosion rate for reinforced concrete beams based on corrosive crack width", J. Zhejiang Univ. Sci. A, 15(3), 197-207. https://doi.org/10.1631/jzus.A1300280
- Yalciner, H., Eren, O. and Sensoy, S. (2012), "An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level", Cement Concrete Res., 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003.
- Zhang, X., Liang, X., Huang, H. and Zhou, H. (2016), "An experimental study on effect of steel corrosion on the bond-slip performance of reinforced concrete", International Conference on Durability of Concrete Structures.
- Zhao, Y., Lin, H., Wu, K. and Jin, W. (2013), "Bond behaviour of normal/recycled concrete and corroded steel bars", Constr. Build. Mater., 48, 348-359. https://doi.org/10.1016/j.conbuildmat.2013.06.091.