과제정보
The authors acknowledge the financial support of VLIR-UOS TEAM Project, VN2017TEA454A103, 'An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion', funded by the Flemish Government.
참고문헌
- Alfarah, B., Almansa, F.L. and Oller, S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
- Al-Rub, A. and Kim, S.M. (2010), "Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture", Eng. Fract. Mech., 77, 1577-1603. https://doi.org/10.1016/j.engfracmech.2010.04.007.
- Barr, B. and Lee, M.K. (2003), "Modelling the strain-softening behaviour of plain concrete using a double-exponential model", Mag. Concrete, 55(4), 343-353. https://doi.org/10.1680/macr.2003.55.4.343.
- Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", ACI J., 82(6), 797-804.
- CEB-FIP (2010), Model Code 2010, Thomas Telford, London.
- Chen, Z., Fu, C., Ling, Y. and Jin, X. (2020), "Dynamic fracture catastrophe model of concrete beam under static load", Comput. Concrete, 25(6), 517-523. https://doi.org/10.12989/cac.2020.25.6.517.
- Du, J., Yon, J.H., Hawkins, N.M., Arakawa, K. and Kobayashi, A.S. (1992), "Fracture process zone for concrete for dynamic loading", ACI J., 89(3), 252-258.
- Finozzi, I.B.N., Berto, L. and Saetta, A. (2015), "Structural response of corroded RC beams: a comprehensive damage approach", Comput. Concrete, 15(3), 411-436. https://doi.org/10.12989/cac.2015.15.3.411.
- Foote, R.M.L., Mai, Y.W. and Cotterell, B. (1986), "Crack growth resistance curves in strain-softening materials", J. Mech. Phys. Solid., 34(6), 593-607. https://doi.org/10.1016/0022-5096(86)90039-6.
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J., 82(3), 310-323.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- Islam, A.B.M. (2020), "Computer aided failure prediction of reinforced concrete beam", Comput. Concrete, 25(1), 67-73. https://doi.org/10.12989/cac.2020.25.1.067.
- Karsan, L.D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., ASCE, 95(12), 2535-2563. https://doi.org/10.1061/JSDEAG.0002424.
- Kumar, P. (2004), "A compact analytical material model for unconfined concrete under uni-axial compression", Mater. Struct., 37, 585-590. https://doi.org/10.1007/BF02483287.
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- Liaw, B.M., Jeang, F.L., Du, J.J., Hawkins, N.M. and Kobayashi, A.S. (1990), "Improved nonlinear model for concrete fracture", J. Eng. Mech., 116(2), 429-445. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(429).
- Lu, Z.H. and Zhao, Y.G. (2010), "Empirical stress-strain model for unconfined high-strenth concrete under uniaxial compression", J. Mater. Civil Eng., 22, 1181-1186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000095.
- Markovich, N., Kochavi, E. and Ben-Dor, G. (2011), "An improved calibration of the concrete damage model", Finite Elem. Anal. Des., 47, 1280-1290. https://doi.org/10.1016/j.finel.2011.05.008,
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., ASCE, 115(2), 345-65. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345).
- Park, R. and Paulay, T. (1975), "Reinforced concrete structures", Department of Civil Engineering, University of Canterbury, New Zealand, 11-43.
- Pituba, J.J. (2015), "A damage model formulation: unilateral effect and RC structures analysis", Comput. Concrete, 15(5), 709-733. https://doi.org/10.12989/cac.2015.15.5.709.
- Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
- Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
- Rabczuk, T., Zi G., Bordas S. and Nguyen-Xuan. H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.
- Rabczuk, T., Zi G., Bordas S., and Nguyen-Xuan. H. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.
- Reinhardt, H.W. (1985), "Crack softening zone in plain concrete under static loading", Cement Concrete Res., 115, 42-52. https://doi.org/10.1016/0008-8846(85)90007-9.
- Reinhardt, H.W., Cornelisse, H.A.W. and Hordijk, D.K. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).
- Roelfstra, P.E. and Wittmann, F.H. (1986), "Numerical method to link strain softening with failure of concrete", Fracture Toughness and Fracture Energy of Concrete, Ed. F.H. Wittmann, Elsevier Science, Amsterdam.
- Sargin, M., Ghosh, S.K. and Handa, V.K. (1971), "Effects of lateral reinforcement upon the strength and deformation properties of concrete", Mag. Concrete Res., 23(75-76), 99-110. https://doi.org/10.1680/macr.1971.23.76.99.
- Sinha, B.P., Gerstle, K.H. and Tulin, L.G. (1964), "Stress-strain relations for concrete under cyclic loading", J. ACI, 61(2), 195-211.
- Tasnimi, A.A. (2004), "Mathematical model for complete stress-strain curve prediction of normal, light-weight and high-strength concretes", Mag. Concrete Res., 56(1), 23-34. https://doi.org/10.1680/macr.2004.56.1.23.
- Tomaszewicz, A. and Betongens, A. (1984), SINTEF Rep. No. STF 65A84605, Trondheim.
- Van Gysel, A. and Taerwe, L. (1996), "Analytical formulation of the complete stress-strain curve for high strength concrete", Mater. Struct., 29, 529-533. https://doi.org/10.1007/BF02485952.
- Wang, P.T., Shah, S.P. and Naaman, A.E. (1978), "Stress-strain curves of normal and light weight concrete in compression", ACI J., 75(11), 603-611.
- Wee, T.H., Chin, M.S. and Mansur, M.A. (1996), "Stress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70).
- Xu. J., Yuan, S. and Chen, W. (2019), "Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete", Comput. Concrete, 23(3), 171-188. https://doi.org/10.12989/cac.2019.23.3.171.