DOI QR코드

DOI QR Code

Relationship between point load index and mode II fracture toughness of granite

  • Sarfarazi, V. (Department of Mining Engineering, Hamedan University of Technology) ;
  • Asgari, Kaveh (Department of Mining Engineering, Shahid Bahonar University of Kerman) ;
  • Naderi, A.A. (Hamedan University of Technology)
  • 투고 : 2021.01.29
  • 심사 : 2021.05.17
  • 발행 : 2021.07.25

초록

Experimental and numerical methods were used to investigate the relationship between point load index and mode II fracture toughness of granite. A punch-through shear test was used to measure the mode II fracure toughness of granite. Point load test was performed to measured the point load index of jointed granite. Three granite samples with dimension of 20 mm×150 mm×40 mm consisting parallel non-persisent joint were prepared in the laboratory for punch test. Also six recangular specimen with echelon joint was prepared for point load test. Cuncurrent with experimental tests, numerical simulations have been done for punch test by PFC2D and poin load test by PFC3D. Numerical model for punch test has dimension of 100 mm×120 mm. similar to those for joints configuration systems in the experimental test, three models with different rock bridge lengths were prepared. Also, numerical model for point load test has dimension of 100 mm×100 mm×40 mm. six models consisting non-persistent joint were prepared. The punch testing results showed that the failure process was mostly governed by the rock bridge lengh. The shear strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint length. The point load testing results showed that the tensile cracks initiate beneath the loading cone and propagates through the intact rock till coalescence with notch tips. The value of point load index has close relationship with mode II fracture toughness obtained by punch test. The failure pattern and failure load are similar in both methods i.e., the experimental testing and the numerical simulation methods.

키워드

참고문헌

  1. Aliha, M.R.M. and Ayatollahi, M.R. (2011), "Mixed mode I/II brittle fracture evaluation of marble using SCB specimen", Procedia Eng., 10, 311-318. https://doi.org/10.1016/j.proeng.2011.04.054.
  2. American Society for Testing and Materials (ASTM) (2008), Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  3. Atkinson, B.K. (1977), "Technical note fracture toughness of Tennessee sandstone and Carrara Marble using the double torsion testing method", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 49-53. https://doi.org/10.1016/0148-9062(79)90774-5.
  4. Ayatollahi, M.R. and Akbardoost, J. (2013), "Size and geometry effects on rock fracture toughness: mode i fracture", Rock Mech. Rock Eng., 8, 1-11. https://doi.org/10.1007/s00603-013-0430-7.
  5. Ayatollahi, M.R. and Akbardoost, J. (2013), "Size effects in mode II brittle fracture of rocks", Eng. Fract. Mech., 112, 165-180. https://doi.org/10.1016/j.engfracmech.2013.10.011.
  6. Ayatollahi, M.R. and Alborzi, M.J. (2013), "Rock fracture toughness testing using SCB specimen", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
  7. Ayatollahi, M.R. and Aliha, M.R.M. (2005), "Cracked Brazilian disc specimen subjected to mode II deformation", Eng. Fract. Mech., 72, 493-503. https://doi.org/10.1016/j.engfracmech.2004.05.002.
  8. Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75, 4631-4461. https://doi.org/10.1016/j.engfracmech.2008.06.018.
  9. Backers, T. (2004), "Fracture toughness determination and micromechanics of rock under mode I and mode II loading", University of Potsdam, Germany.
  10. Backers, T. and Stephansson, O. (2012), "ISRM suggested method for the determination of mode II fracture toughness", Rock Mech. Rock Eng., 45, 1011-1022. https://doi.org/10.1007/978-3-319-07713-0_4.
  11. Bagi, K. (2012), "Fundamentals of the discrete element method", Lecture Notes, BME Faculty of Civil Engineering, Budapest, Hungary.
  12. Basu, A. and Aydin, A. (2006), "Predicting uniaxial compressive strength by point load test: Significance of cone penetration", Rock Mech. Rock Eng., 39(5), 483-490. https://doi.org/10.1007/s00603-006-0082-y.
  13. Basu, A. and Kamran, M. (2010), "Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength", J. Rock Mech. Min. Sci., 47(5), 823-828. https://doi.org/10.1016/j.ijrmms.2010.04.006.
  14. Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72(3-4), 457-475. https://doi.org/10.1007/s10064-013-0505-4.
  15. Bieniawski, Z.T. (1975), "The point-load test in geotechnical practice", Eng. Geol., 9(1), 1-11. https://doi.org/10.1016/0013-7952(75)90024-1.
  16. Broch, E. and Franklin, J.A. (1972), "The point-load strength test", J. Rock Mech. Min. Sci. Geomech. Abstr., 9(6), 669-676. https://doi.org/10.1016/0148-9062(72)90030-7.
  17. Celik, S.B. (2008), "Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity", Bull. Eng. Geol. Environ., 67(4), 491-498. https://doi.org/10.1007/s10064-008-0158-x.
  18. Chau, K.T. and Wong, R.H.C. (1996), "Uniaxial compressive strength and point load strength of rocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 33(2), 183-188. https://doi.org/10.1016/0148-9062(95)00056-9
  19. Chen, F., Cao, P., Rao, Q.H., Ma, C.D. and Sun, Z.Q. (2005), "A mode II fracture analysis of double edge cracked Brazilian disk using the weight function method", Int. J. Rock Mech. Min. Sci., 42, 461-465. https://doi.org/10.1016/j.ijrmms.2004.11.008.
  20. Davies, J., Yim, C.W.A. and Morgan, T.G. (1987), "Determination of fracture parameters of a punch-through shear specimen", Int. J. Cement Compos. Lightw. Concrete, 9(1), 33-41. https://doi.org/10.1016/0262-5075(87)90035-2.
  21. Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, O. (2005), "A comparative evaluation of indirect methods to estimate the compressive strength of rocks", Rock Mech. Rock Eng., 38(4), 329-343. https://doi.org/10.1007/s00603-005-0061-8.
  22. Fowell, R.J. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimen", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 57-64. https://doi.org/10.1016/0148-9062(94)00015-U
  23. Franklin, J.A. (ISRM) (1985), "Suggested method for determining point load strength: ISRM common testing methods", Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 51-60. https://doi.org/10.1016/0148-9062(85)92327-7.
  24. Funatsu, T., Kuruppu, M. and Matsui, K. (2014), "Effects of temperature and confining pressure on mixed-mode (I-II) and mode II fracture toughness of Kimachi sandstone", Int. J. Rock Mech. Min. Sci., 67, 1-8. https://doi.org/10.1016/j.ijrmms.2013.12.009.
  25. Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. Tran. R. Soc. London Ser. A, Contain. Pap. Math. Phys. Character., 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.
  26. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcracks coalescence mechanism in rock-like materials", Strength Mater., 47(1), 740-754. https://doi.org/10.1007/s11223-015-9711-6.
  27. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z.
  28. Haeri, H., Marji, M.F. and Shahriar, K. (2015c), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5.
  29. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015d), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5.
  30. Heidari, M., Khanlari, G., Torabi Kaveh, M. and Kargarian, S. (2012), "Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing", Rock Mech. Rock Eng., 45(2), 265-273. https://doi.org/10.1007/s00603-011-0196-8.
  31. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J Appl Mech., 24(3), 361-364. https://doi.org/10.1115/1.4011547.
  32. Kahraman, S. and Gunaydin, O. (2009), "The effect of rock classes on the relation between uniaxial compressive strength and point load index", Bull. Eng. Geol. Environ., 68(3), 345-353. https://doi.org/10.1007/s10064-009-0195-0.
  33. Kahraman, S., Gunaydin, O. and Fener, M. (2005), "The effect of porosity on the relation between uniaxial compressive strength and point load index", J. Rock. Mech. Min. Sci., 42(4), 584-589. https://doi.org/10.1016/j.ijrmms.2005.02.004.
  34. Kallimogiannis, V. and Saroglou H. (2017), "Study of cracking process in granite", Procedia Eng., 191, 1108-1116. https://doi.org/10.1016/j.proeng.2017.05.285
  35. Kayabal, K. and Selcuk, L. (2010), "Nail penetration test for determining the uniaxial compressive strength of rock", J. Rock. Mech. Min. Sci., 47(2), 265-271. https://doi.org/10.1016/j.ijrmms.2009.09.010.
  36. Kemeny, J., Ko, T.Y. and Jeon, S. (2014), "Fracture characteristics of rocks under shear loading", Tunn. Undergr. Sp. Constr. Sustain. Dev., 18, 760-764. https://doi.org/10.1007/s12205-014-0330-8.
  37. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 23-34. https://doi.org/10.12989/cac.2015.15.2.199.
  38. Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P. and Funatsu, T. (2014), "ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen", Rock Mech. Rock Eng., 47, 267-274. https://doi.org/10.1007/s00603-013-0422-7.
  39. Lee, S., Lee, S.H. and Chang, Y.S. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. http://doi.org/10.12989/sem.2015.53.6.1271.
  40. Li, D. and Wong, L.N.Y. (2013), "Point load test on meta-sedimentary rocks and correlation to UCS and BTS", Rock Mech. Rock Eng., 46(4), 889-896. https://doi.org/10.1007/s00603-012-0299-x.
  41. Ma, G.W. and Wu, W. (2010), "Water saturation effects on sedimentary rocks", Civil Eng. Res., 23, 129-131.
  42. Meredith, P.G. and Atkinson, B.K. (1985), "Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro", Phys. Earth. Planet Inter., 39, 33-51. https://doi.org/10.1016/0031-9201(85)90113-X.
  43. Moon, T., Nakagawa, M. and Berger, J. (2007), "Measurement of fracture toughness using the distinct element method", Int. J. Rock Mech. Min. Sci., 44, 449-456. http://doi.org/10.1016/j.ijrmms.2006.07.015.
  44. Mosabepranah, M.A. and Eren, O. (2016), "Statistical flexural toughness modeling of ultra high performance concrete using response surface method", Comput. Concrete, 17(4), 33-39. http://doi.org/10.12989/cac.2016.17.4.477.
  45. Nasseri, M.H.B., Mohanty, B. and Young, R.P. (2006), "Fracture toughness measurements and acoustic emission activity in brittle rocks", Pure Appl. Geophys., 163, 917-945. https://doi.org/10.1007/s00024-006-0064-8.
  46. Ouchterlony, F. (1988), "Suggested methods for determining the fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96. https://doi.org/10.1016/0148-9062(88)91871-2.
  47. Park, N. (2006), "Discrete element modeling of rock fracture behavior: fracture toughness and time-dependent fracture growth", The University of Texas at Austin.
  48. Protodyakonov, M.M. and Voblikov, V.S (1957), "Determining the strength of rock on samples of an irregular shape", Ugol., 32(4), 66-78.
  49. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156. http://doi.org/10.12989/sem.2016.58.2.217.
  50. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149.
  51. Rao, Q., Sun, Z., Wang, G., Xu, J. and Zhang, J. (2001), "Effect of specimen thickness on Mode II fracture toughness of rock", J. Cent. South Univ. Technol., 8, 114-119. https://doi.org/10.1007/s11771-001-0037-0.
  52. Sarfarazi, V. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
  53. Sarfarazi, V. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://doi.org/10.12989/acc.2015.3.4.269.
  54. Sarfarazi, V. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://doi.org/10.12989/cac.2016.17.6.723.
  55. Sarfarazi, V. (2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 79-89. https://doi.org/10.12989/cac.2017.20.1.039.
  56. Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
  57. Singh, T.N., Kainthola, A. and Venkatesh, A. (2012), "Correlation between point load index and uniaxial compressive strength for different rock types", Rock Mech. Rock Eng., 45(2), 259-264. https://doi.org/10.1007/s00603-011-0192-z.
  58. Singh, V.K. and Singh, D.P. (1993), "Correlation between point load index and compressive strength for quartzite rocks", Geotch. Geol. Eng., 11(4), 269-272. https://doi.org/10.1007/BF00466369
  59. Sonmez, H. and Osman, B. (2008), "The limitations of point load index for predicting of strength of rock material and a new approach", Proceedings of the 61st Geological Congress of Turkey, 1, 261-262.
  60. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E. and Nefeslioglu, H.A. (2006), "Estimating the uniaxial compressive strength of a volcanic bimrock", J. Rock Mech. Min. Sci., 43(4), 554-561. https://doi.org/10.1016/j.ijrmms.2005.09.014.
  61. Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004), "Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate", J. Rock Mech. Min. Sci., 41(5), 717-729. https://doi.org/10.1016/j.ijrmms.2004.01.011.
  62. Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.
  63. Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.
  64. Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2015a), "Numerical observation of three dimensional wing-cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.
  65. Xu, Y., Dai, F., Zhao, T. and Yi, N.X. (2016), "Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles", Rock Mech. Rock Eng., 49, 3083-3093. https://doi.org/10.1007/s00603-016-0978-0.
  66. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. http://doi.org/10.12989/sem.2016.57.6.1143.
  67. Yoon, J. (2004), "Experimental verification of a pts mode II test for rock", Int. J. Rock Mech. Min. Sci., 41, 1-7.
  68. Yoon, J. (2007), "Hydro-mechanical coupling of shear-induced rock fracturing by bonded particle modeling", Doctoral Dissertation, Ph. D. Thesis, Seoul National University.
  69. Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 102-111. http://doi.org/10.12989/cac.2015.15.2.199.
  70. Yurdakul, O., Tunaboyu, O., Routil, L. and Avsar, O. (2019), "Stochastic based nonlinear numerical modelling of structurally repaired shear critical beam", J. Compos. Constr., 23(5), 04019042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000966.
  71. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", J. Rock. Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.