Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project no. 2020/01/16794.
References
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecul. Cell Res., 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.
- Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molecul. Cell Biology, 5(8), 601-613. https://doi.org/10.1038/nrm1438.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biolog. Macromol., 5, 267-274. https://doi.org/10.1016/0141-8130(83)90040-5.
- Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69, 165410. https://doi.org/10.1103/PhysRevB.69.165410.
- Domagala, W., Lubinski, J., Weber, K. and Osborn, M. (1986), "Intermediate filament typing of tumor cells in fine needle aspirates by means of monoclonal antibodies", Acta Cytologica, 30(3), 214-224.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nat., 463, 485. https://doi.org/10.1038/nature08908.
- Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proc. Nat. Acad. Sci., 75, 5034-5038. https://doi.org/10.1073/pnas.75.10.5034.
- Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biology, 120, 923-934. https://doi.org/10.1083/jcb.120.4.923.
- Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
- Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biology, 177, 14-23. https://doi.org/10.1016/j.jsb.2011.11.017.
- Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biolog. Macromol., 14, 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2.
- Gruenbaum, Y. and Foisner, R. (2015), "Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation", Ann. Rev. Biochem., 84, 131-164. https://doi.org/10.1146/annurev-biochem-060614-034115.
- Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nat. Rev. Molecul. Cell Biology, 6, 21. https://doi.org/10.1038/nrm1550.
- Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Molecul. Biology, 360, 623-630. https://doi.org/10.1016/j.jmb.2006.05.030.
- Gyoeva, F. and Gelfand, V. (1992), "Coalignment of vimentin intermediate filaments with microtubules depends on kinesin", Trend. Cell Biology, 2, 9. https://doi.org/10.1038/353445a0.
- Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecul. Biology Ed., 42(1), 93-94. https://doi.org/10.1002/bmb.20746.
- Hanukoglu, I. and Fuchs, E. (1982), "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins", Cell, 31(1), 243-252. https://doi.org/10.1016/0092-8674(82)90424-X.
- Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
- Helfand, B.T., Chang, L. and Goldman, R.D. (2004), "Intermediate filaments are dynamic and motile elements of cellular architecture", J. Cell Sci., 117(2), 133-141. https://doi.org/10.1242/jcs.00936.
- Herrmann, H. and Aebi, U. (2004), "Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds", Ann. Rev. Biochem., 73, 749-789. https://doi.org/10.1146/annurev.biochem.73.011303.073823.
- Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8(7), 562-573. https://doi.org/10.1038/nrm2197.
- Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8, 562. https://doi.org/10.1038/nrm2197.
- Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biology, 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.
- Karabinos, A., Riemer, D., Erber, A. and Weber, K. (1998), "Homologues of vertebrate type I, II and III intermediate filament (IF) proteins in an invertebrate: the IF multigene family of the cephalochordate Branchiostoma", FEBS Lett., 437(1-2), 15-18. https://doi.org/10.1016/S0014-5793(98)01190-9.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Molecul. Biology, 19(7), 707. https://doi.org/10.1038/nsmb.2330.
- Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
- Lodish, H., Berk, A., Kaiser, C. A., Kaiser, C., Krieger, M., Scott, M. P., ... & Matsudaira, P. (2008), Molecular Cell Biology, Macmillan.
- Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnol., 11, 139. https://doi.org/10.108/0957-4484/11/3/301.
- Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Parry, D.A., Marekov, L.N., Steinert, P.M. and Smith, T.A. (2002), "A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte keratin", J. Struct. Biology, 137(1-2), 97-108. https://doi.org/10.1006/jsbi.2002.4437.
- Qin, Z., Gautieri, A., Nair, A.K., Inbar, H. and Buehler, M.J. (2012), "Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface", Langmuir, 28, 1982-1992. https://doi.org/10.1021/la204052a.
- Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4, e7294. https://doi.org/10.1371/journal.pone.0007294.
- Quinlan, R., Hutchison, C. and Lane, B. (1995), "Intermediate filament proteins", Protein Profile, 2(8), 795.
- Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proc. Nat. Acad. Sci., 111, 11359-11364. https://doi.org/10.1073/pnas.1403122111.
- Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
- Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
- Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
- Shoeman, R. L., Huttermann, C., Hartig, R. and Traub, P. (2001), "Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells", Molecul. Biology Cell, 12(1), 143-154. https://doi.org/10.1091/mbc.12.1.143.
- Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.
- Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70, 1174-1186. https://doi.org/10.1139/o92-163.
- Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessay., 25, 243-251. https://doi.org/10.1002/bies.10246.
- Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., ... & Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.
- Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.
- Timoshenko, S. (1953), History of Strength of Materials, McGraw-Hill Book Company. Inc., New York/Toronto/London.
- Traub, P. (2012), Intermediate Filaments: A Review, Springer Science & Business Media.
- Truesdell, C. (1960), The Rational Mechanics of Flexible or Elastic Bodies: 1638-1788, Leonhardi Euleri Opera Omnia, Ser. 2.
- Wagner, O.I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F. and Janmey, P.A. (2007), "Softness, strength and self-repair in intermediate filament networks", Exp. Cell Res., 313, 2228-2235. https://doi.org/10.1016/j.yexcr.2007.04.025
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505.
- Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in Type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-10349. https://doi.org/10.1021/bi0108305.
- Yoon, M., Moir, R.D., Prahlad, V. and Goldman, R.D. (1998), "Motile properties of vimentin intermediate filament networks in living cells", J. Ccell Biology, 143, 147-157. https://doi.org/10.1083/jcb.143.1.147.
- Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.