DOI QR코드

DOI QR Code

Strength performance with buckling analysis of Intermediate filaments by consideration nonlocal parameters

  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elaloui, Elimame (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa) ;
  • Touns, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.02.25
  • Accepted : 2021.04.26
  • Published : 2021.07.25

Abstract

Protein structures, that form intermediate filaments (IFs) was first found by an experiment known as the computerized analysis of amino acid sequence of a human epidermal keratin derived from cloned cDNAs. This study is made by the application of Euler beam theory. The buckling of intermediate filaments is studied keeping the nonlocal effects under consideration. It is observed that the nonlocal parameter has a great impact on the dynamics of intermediate filaments. The buckling behavior of intermediate filaments is investigated with different four conditions like as simply supported, clamped, cantilever and propped cantilever beam. Also the effect of critical bucking force is seen for different strengths of nonlocal parameter as 1,2,3,4.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project no. 2020/01/16794.

References

  1. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.
  2. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  3. Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecul. Cell Res., 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.
  4. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molecul. Cell Biology, 5(8), 601-613. https://doi.org/10.1038/nrm1438.
  5. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  6. Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biolog. Macromol., 5, 267-274. https://doi.org/10.1016/0141-8130(83)90040-5.
  7. Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69, 165410. https://doi.org/10.1103/PhysRevB.69.165410.
  8. Domagala, W., Lubinski, J., Weber, K. and Osborn, M. (1986), "Intermediate filament typing of tumor cells in fine needle aspirates by means of monoclonal antibodies", Acta Cytologica, 30(3), 214-224.
  9. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  10. Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nat., 463, 485. https://doi.org/10.1038/nature08908.
  11. Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proc. Nat. Acad. Sci., 75, 5034-5038. https://doi.org/10.1073/pnas.75.10.5034.
  12. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biology, 120, 923-934. https://doi.org/10.1083/jcb.120.4.923.
  13. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  14. Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biology, 177, 14-23. https://doi.org/10.1016/j.jsb.2011.11.017.
  15. Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biolog. Macromol., 14, 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2.
  16. Gruenbaum, Y. and Foisner, R. (2015), "Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation", Ann. Rev. Biochem., 84, 131-164. https://doi.org/10.1146/annurev-biochem-060614-034115.
  17. Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nat. Rev. Molecul. Cell Biology, 6, 21. https://doi.org/10.1038/nrm1550.
  18. Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Molecul. Biology, 360, 623-630. https://doi.org/10.1016/j.jmb.2006.05.030.
  19. Gyoeva, F. and Gelfand, V. (1992), "Coalignment of vimentin intermediate filaments with microtubules depends on kinesin", Trend. Cell Biology, 2, 9. https://doi.org/10.1038/353445a0.
  20. Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecul. Biology Ed., 42(1), 93-94. https://doi.org/10.1002/bmb.20746.
  21. Hanukoglu, I. and Fuchs, E. (1982), "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins", Cell, 31(1), 243-252. https://doi.org/10.1016/0092-8674(82)90424-X.
  22. Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
  23. Helfand, B.T., Chang, L. and Goldman, R.D. (2004), "Intermediate filaments are dynamic and motile elements of cellular architecture", J. Cell Sci., 117(2), 133-141. https://doi.org/10.1242/jcs.00936.
  24. Herrmann, H. and Aebi, U. (2004), "Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds", Ann. Rev. Biochem., 73, 749-789. https://doi.org/10.1146/annurev.biochem.73.011303.073823.
  25. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8(7), 562-573. https://doi.org/10.1038/nrm2197.
  26. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8, 562. https://doi.org/10.1038/nrm2197.
  27. Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biology, 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.
  28. Karabinos, A., Riemer, D., Erber, A. and Weber, K. (1998), "Homologues of vertebrate type I, II and III intermediate filament (IF) proteins in an invertebrate: the IF multigene family of the cephalochordate Branchiostoma", FEBS Lett., 437(1-2), 15-18. https://doi.org/10.1016/S0014-5793(98)01190-9.
  29. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  30. Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Molecul. Biology, 19(7), 707. https://doi.org/10.1038/nsmb.2330.
  31. Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
  32. Lodish, H., Berk, A., Kaiser, C. A., Kaiser, C., Krieger, M., Scott, M. P., ... & Matsudaira, P. (2008), Molecular Cell Biology, Macmillan.
  33. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  34. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnol., 11, 139. https://doi.org/10.108/0957-4484/11/3/301.
  35. Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press.
  36. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  37. Parry, D.A., Marekov, L.N., Steinert, P.M. and Smith, T.A. (2002), "A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte keratin", J. Struct. Biology, 137(1-2), 97-108. https://doi.org/10.1006/jsbi.2002.4437.
  38. Qin, Z., Gautieri, A., Nair, A.K., Inbar, H. and Buehler, M.J. (2012), "Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface", Langmuir, 28, 1982-1992. https://doi.org/10.1021/la204052a.
  39. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4, e7294. https://doi.org/10.1371/journal.pone.0007294.
  40. Quinlan, R., Hutchison, C. and Lane, B. (1995), "Intermediate filament proteins", Protein Profile, 2(8), 795.
  41. Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proc. Nat. Acad. Sci., 111, 11359-11364. https://doi.org/10.1073/pnas.1403122111.
  42. Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  43. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
  44. Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  45. Shoeman, R. L., Huttermann, C., Hartig, R. and Traub, P. (2001), "Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells", Molecul. Biology Cell, 12(1), 143-154. https://doi.org/10.1091/mbc.12.1.143.
  46. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.
  47. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70, 1174-1186. https://doi.org/10.1139/o92-163.
  48. Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessay., 25, 243-251. https://doi.org/10.1002/bies.10246.
  49. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., ... & Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.
  50. Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.
  51. Timoshenko, S. (1953), History of Strength of Materials, McGraw-Hill Book Company. Inc., New York/Toronto/London.
  52. Traub, P. (2012), Intermediate Filaments: A Review, Springer Science & Business Media.
  53. Truesdell, C. (1960), The Rational Mechanics of Flexible or Elastic Bodies: 1638-1788, Leonhardi Euleri Opera Omnia, Ser. 2.
  54. Wagner, O.I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F. and Janmey, P.A. (2007), "Softness, strength and self-repair in intermediate filament networks", Exp. Cell Res., 313, 2228-2235. https://doi.org/10.1016/j.yexcr.2007.04.025
  55. Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505.
  56. Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in Type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-10349. https://doi.org/10.1021/bi0108305.
  57. Yoon, M., Moir, R.D., Prahlad, V. and Goldman, R.D. (1998), "Motile properties of vimentin intermediate filament networks in living cells", J. Ccell Biology, 143, 147-157. https://doi.org/10.1083/jcb.143.1.147.
  58. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.