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ON φ-w-FLAT MODULES AND

THEIR HOMOLOGICAL DIMENSIONS

Xiaolei Zhang and Wei Zhao

Abstract. In this paper, we introduce and study the class of φ-w-flat

modules which are generalizations of both φ-flat modules and w-flat mod-
ules. The φ-w-weak global dimension φ-w-w.gl.dim(R) of a commutative

ring R is also introduced and studied. We show that, for a φ-ring R,
φ-w-w.gl.dim(R) = 0 if and only if w-dim(R) = 0 if and only if R is

a φ-von Neumann ring. It is also proved that, for a strongly φ-ring R,

φ-w-w.gl.dim(R) ≤ 1 if and only if each nonnil ideal of R is φ-w-flat, if
and only if R is a φ-PvMR, if and only if R is a PvMR.

Throughout this paper, R denotes a commutative ring with 1 6= 0 and all
modules are unitary. We denote by Nil(R) the nilpotent radical of R, Z(R)
the set of all zero-divisors of R and T(R) the localization of R at the set of
all regular elements. The R-submodules I of T(R) such that sI ⊆ R for some
regular element s are said to be fractional ideals. Recall from [3] that a ring R
is an NP-ring if Nil(R) is a prime ideal, and a ZN-ring if Z(R) = Nil(R). A
prime ideal P is said to be divided prime if P ( (x) for every x ∈ R − P . Set
H = {R |R is a commutative ring and Nil(R) is a divided prime ideal of R}.
A ring R is a φ-ring if R ∈ H. Moreover, a ZN φ-ring is said to be a strongly
φ-ring. For a φ-ring R, there is a ring homomorphism φ : T(R) → RNil(R)

such that φ(a/b) = a/b where a ∈ R and b is a regular element. Denote by
the ring φ(R) the image of φ restricted to R. In 2001, Badawi [4] investigated
φ-chain rings (φ-CRs for short) and φ-pseudo-valuation rings as a φ-version
of chain rings and pseudo-valuation rings. In 2004, Anderson and Badawi [1]
introduced the concept of φ-Prüfer rings and showed that a φ-ring R is φ-
Prüfer if and only if Rm is a φ-chain ring for any maximal ideal m of R if and
only if R/Nil(R) is a Prüfer domain if and only if φ(R) is Prüfer. Later, the
authors in [2, 5] generalized the concepts of Dedekind domains, Krull domains
and Mori domains to the context of rings that are in the class H. In 2013, Zhao
et al. [19] introduced and studied the conceptions of φ-flat modules and φ-von
Neumann rings and obtained that a φ-ring is φ-von Neumann if and only if its
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Krull dimension is 0. Recently, Zhao [18] gave a homological characterization
of φ-Prüfer rings as follows: a strongly φ-ring R is φ-Prüfer, if and only if each
submodule of a φ-flat module is φ-flat, if and only if each nonnil ideal of R is
φ-flat.

Some other important generalizations of classical notions are their w-ver-
sions. In 1997, Wang and McCasland [15] introduced the w-modules over
strong Mori domains (SM domains for short) which can be seen as a w-version
of Noetherian domains. In 2011, Yin et al. [17] extended w-theories to commu-
tative rings containing zero divisors. The notion of w-flat modules appeared
first in [10] for integral domains and was extended to arbitrary commutative
rings in [13]. In 2012, Kim and Wang [7] introduced φ-SM rings which can be
seen as both a φ-version and a w-version of Noetherian domains and obtained
that a φ-ring R is φ-SM if and only if R/Nil(R) is an SM domain if and only
if φ(R) is an SM ring. In 2014, Wang and Kim [12] introduced w-w.gl.dim(R)
as a generalization of the classical weak global dimension and obtained that
a ring R is a von Neumann ring if and only if each R-module is w-flat, i.e.,
w-w.gl.dim(R) = 0. In 2015, Wang and Qiao [16] studied several properties of
the w-weak global dimension, and proved that an integral domain R is a Prüfer
v-multiplication domain (PvMD for short) if and only if w-w.gl.dim(R) ≤ 1 if
and only if Rm is a valuation domain for any maximal w-ideal m of R. As
φ-rings are natural extensions of integral domains, we introduce and study the
φ-versions of w-flat modules, von Neumann rings and PvMDs in this article.
As our work involves w-theories, we give a review as below.

Let R be a commutative ring and J a finitely generated ideal of R. Then
J is called a GV-ideal if the natural homomorphism R → HomR(J,R) is an
isomorphism. The set of all GV-ideals is denoted by GV(R). An R-module
M is said to be GV-torsion if for any x ∈ M there is a GV-ideal J such that
Jx = 0; an R-module M is said to be GV-torsion free if Jx = 0, then x = 0
for any J ∈ GV(R) and x ∈ M . A GV-torsion free module M is said to be a
w-module if for any x ∈ E(M) there is a GV-ideal J such that Jx ⊆M where
E(M) is the injective envelope of M . The w-envelope Mw of a GV-torsion free
module M is defined by the minimal w-module that contains M . Therefore, a
GV-torsion free module M is a w-module if and only if Mw = M . A maximal
w-ideal for which is maximal among the w-submodules of R is proved to be
prime (see [17, Proposition 3.8]). The set of all maximal w-ideals is denoted
by w-Max(R). The w-dimension w-dim(R) of a ring R is defined to be the
supremum of the heights of all maximal w-ideals.

An R-homomorphism f : M → N is said to be a w-monomorphism (resp.,
w-epimorphism, w-isomorphism) if for any p ∈ w-Max(R), fp : Mp → Np is a
monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w-
monomorphism (resp., w-epimorphism) if and only if Ker(f) (resp., Coker(f))
is GV-torsion. A sequence A→ B → C is said to be w-exact if for any p ∈ w-
Max(R), Ap → Bp → Cp is exact. A class C of R-modules is said to be closed
under w-isomorphisms provided that for any w-isomorphism f : M → N , if
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one of the modules M and N is in C, so is the other. An R-module M is
said to be of finite type if there exist a finitely generated free module F and a
w-epimorphism g : F →M , or equivalently, if there exists a finitely generated
R-submodule N of M such that Nw = Mw. Certainly, the class of finite type
modules is closed under w-isomorphisms. Now we proceed to introduce the
notion of φ-w-flat modules.

1. φ-w-flat modules

We say an ideal I of R is nonnil provided that there is a non-nilpotent
element in I. Denote by NN(R) the set of all nonnil ideals of R. Certainly,
GV-ideals are nonnil. Let R be an NP-ring. It is easy to verify that NN(R) is
a multiplicative system of ideals. That is R ∈ NN(R) and for any I ∈ NN(R),
J ∈ NN(R), we have IJ ∈ NN(R). Let M be an R-module. Define

φ-tor(M) = {x ∈M | Ix = 0 for some I ∈ NN(R)}.
An R-module M is said to be φ-torsion (resp., φ-torsion free) provided that
φ-tor(M) = M (resp., φ-tor(M) = 0). Clearly, if R is an NP-ring, the class
of φ-torsion modules is closed under submodules, quotients, direct sums and
direct limits. Thus an NP-ring R is φ-torsion free if and only if every flat
module is φ-torsion free if and only if R is a ZN-ring (see [18, Proposition
2.2]). The classes of φ-torsion modules and φ-torsion free modules constitute a
hereditary torsion theory of finite type. For more details, refer to [9].

Lemma 1.1. Let R be an NP-ring, m a maximal w-ideal of R and I an ideal
of R. Then I ∈ NN(R) if and only if Im ∈ NN(Rm).

Proof. Let I ∈ NN(R) and x a non-nilpotent element in I. We will show the
element x/1 in Im is a non-nilpotent element of Rm. If (x/1)n = xn/1 = 0 in
Rm for some positive integer n, there is an s ∈ R − m such that sxn = 0 in
R. Since R is an NP-ring, Nil(R) is the minimal prime w-ideal of R. In the
integral domain R/Nil(R), we have sxn = 0, thus xn = 0 since s 6∈ Nil(R). So
x ∈ Nil(R), a contradiction.

Let x/s be a non-nilpotent element in Im where x ∈ I and s ∈ R − m.
Clearly, x is non-nilpotent and thus I ∈ NN(R). �

Proposition 1.2. Let R be an NP-ring, m a maximal w-ideal of R and M an
R-module. Then M is φ-torsion over R if and only Mm is φ-torsion over Rm.

Proof. Let M be an R-module and x ∈ M . If Mm is φ-torsion over Rm, there
is an ideal Im ∈ NN(Rm) such that Imx/1 = 0 in Rm. Let I be the preimage
of Im in R. Then I is nonnil by Lemma 1.1. Thus there is a non-nilpotent
element t ∈ I such that tkx = 0 for some k 6∈ m. Let s = tk. Then we have
(s) ∈ NN(R) and (s)x = 0. Thus M is φ-torsion. Suppose M is φ-torsion over
R. Let x/s be an element in Mm. Then there is an ideal I ∈ NN(R) such that
Ix = 0, and thus Imx/s = 0 with Im ∈ Nil(Rm) by Lemma 1.1. It follows that
Mm is φ-torsion over Rm. �
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Recall from [13] that an R-module M is said to be w-flat if for any w-
monomorphism f : A→ B, the induced sequence f ⊗R 1 : A⊗RM → B⊗RM
is also a w-monomorphism. Obviously, GV-torsion modules and flat modules
are all w-flat. It was proved that the class of w-flat modules is closed under
w-isomorphisms (see [14, Corollary 6.7.4]). Following [19, Definition 3.1], an
R-module M is said to be φ-flat if for every monomorphism f : A → B with
Coker(f) φ-torsion, f⊗R1 : A⊗RM → B⊗RM is a monomorphism. Obviously
flat modules are both φ-flat and w-flat. Now we give a generalization of both
φ-flat modules and w-flat modules.

Definition 1.3. Let R be a ring. An R-module M is said to be φ-w-flat if for
every monomorphism f : A→ B with Coker(f) φ-torsion, f ⊗R 1 : A⊗RM →
B ⊗R M is a w-monomorphism; equivalently, if 0 → A → B → C → 0 is
an exact exact sequence with C φ-torsion, then 0 → A ⊗R M → B ⊗R M →
C ⊗RM → 0 is w-exact.

Clearly φ-flat modules and w-flat modules are φ-w-flat. It is well known
that an R-module M is flat if and only if the induced homomorphism 1⊗R f :
M ⊗R I →M ⊗R R is exact for any (finitely generated) ideal I, if and only if
the multiplication homomorphism i : I⊗RM → IM is an isomorphism for any
(finitely generated) ideal I, if and only if TorR1 (R/I,M) = 0 for any (finitely
generated) ideal I of R. Some similar characterizations of w-flat modules and
φ-flat modules are given in [12, Proposition 1.1] and [19, Theorem 3.2], respec-
tively. We can also obtain some similar characterizations of φ-w-flat modules.

Theorem 1.4. Let R be an NP-ring. The following statements are equivalent
for an R-module M :

(1) M is φ-w-flat;
(2) Mm is φ-flat over Rm for all m ∈ w-Max(R);

(3) TorR1 (T,M) is GV-torsion for all (finite type) φ-torsion R-modules T ;

(4) TorR1 (R/I,M) is GV-torsion for all (finite type) nonnil ideals I of R;
(5) f⊗R 1 : I⊗RM → R⊗RM is w-exact for all (finite type) nonnil ideals

I of R;
(6) the multiplication homomorphism i : I⊗RM → IM is a w-isomorphism

for all (finite type) ideals I;
(7) let 0 → K → F → M → 0 be an exact sequence of R-modules, where

F is free. Then (K ∩ FI)w = (IK)w for all (finite type) nonnil ideals
I of R.

Proof. (1) ⇒ (2): Let m be a maximal w-ideal of R, f : Am → Bm an Rm-
homomorphism with Coker(f) φ-torsion over Rm. Then Coker(f) is φ-torsion
over R by Proposition 1.2. It follows that f ⊗RM : Am⊗RM → Bm⊗RM is a
w-monomorphism over R. Localizing at m, we have f⊗Rm

Mm : Am⊗Rm
Mm →

Bm⊗Rm
Mm is a monomorphism over Rm since Nm⊗RMm

∼= Nm⊗Rm
Mm for

any R-module N . It follows that Mm is φ-flat over Rm.
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(2) ⇒ (1): Let f : A → B be a monomorphism with Coker(f) φ-torsion.
For any m ∈ w-Max(R), we have fm : Am → Bm is a monomorphism with
coker(fm) φ-torsion over Rm by Proposition 1.2. Since Mm is φ-flat over Rm,
fm⊗Rm

Mm : Am⊗Rm
Mm → Bm⊗Rm

Mm is a monomorphism. Thus f ⊗RM :
A⊗RM → B ⊗RM is a w-monomorphism. Consequently, M is φ-w-flat.

The equivalences of (2)-(7) hold from [19, Theorem 3.2] by localizing at all
maximal w-ideals. �

Corollary 1.5. Let R be an NP-ring. The class of φ-w-flat modules is closed
under w-isomorphisms.

Proof. Let f : M → N be a w-isomorphism and T a φ-torsion module. There
exist two exact sequences 0 → T1 → M → L → 0 and 0 → L → N → T2 → 0
with T1 and T2 GV-torsion. Considering the induced two long exact sequences
TorR1 (T, T1) → TorR1 (T,M) → TorR1 (T, L) → T ⊗ T1 and TorR2 (T, T2) →
TorR1 (T, L)→ TorR1 (T,N)→ TorR1 (T, T2), we have M is φ-w-flat if and only if
N is φ-w-flat by Theorem 1.4. �

Lemma 1.6. Let R be a φ-ring and I a nonnil ideal of R. Then Nil(R) =
INil(R).

Proof. Let I be a nonnil ideal of R with a non-nilpotent element s ∈ I. Then
Nil(R) ⊆ (s). Thus for any a ∈ Nil(R), there exists b ∈ R such that a = sb.
Thus a = sb in the integral domain R/Nil(R). Since a = 0 and s 6= 0, we
have b = 0. So b ∈ Nil(R) and then Nil(R) ⊆ sNil(R) ⊆ INil(R) ⊆ Nil(R). It
follows that Nil(R) = INil(R). �

Proposition 1.7. Let R be a φ-ring and M an R-module. Then M/Nil(R)M
is φ-flat over R if and only if M/Nil(R)M is flat over R/Nil(R). Consequently,
R/Nil(R) is always φ-flat over R.

Proof. For the “only if” part, let I = I/Nil(R) be an ideal of R = R/Nil(R).

If I is zero, certainly TorR1 (R/I,M/Nil(R)M) = 0. Let I be a non-zero ideal
of R with I ∈ NN(R). Since M/Nil(R)M is φ-flat over R,

TorR1 (R/I,M/Nil(R)M) = 0.

By Lemma 1.6,

TorR1 (R/Nil(R), R/I) ∼= I ∩Nil(R)/INil(R) = Nil(R)/INil(R) = 0.

We have TorR1 (R/I,M/Nil(R)M) ∼= TorR1 (R/I,M/Nil(R)M) = 0 by change of
rings.

For the “if” part, let I be a nonnil ideal of R. Similarly to the proof of “only
if” part, since TorR1 (R/Nil(R), R/I) = 0, we have TorR1 (R/I,M/Nil(R)M) ∼=
TorR1 (R/I,M/Nil(R)M) = 0. It follows that M/Nil(R)M is φ-flat over R. �

By localizing at all maximal w-ideals, we obtain the following corollary.
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Corollary 1.8. Let R be a φ-ring and M an R-module. Then M/Nil(R)M is
φ-w-flat over R if and only if M/Nil(R)M is w-flat over R/Nil(R).

Proof. See Proposition 1.7, Theorem 1.4 and [8, Theorem 3.3]. �

Certainly if R is an integral domain, every φ-w-flat module is w-flat. Con-
versely, this property characterizes integral domains.

Theorem 1.9. The following statements are equivalent for a φ-ring R:

(1) R is an integral domain;
(2) every φ-w-flat module is w-flat;
(3) every φ-flat module is w-flat.

Proof. (1)⇒ (2)⇒ (3): Trivial.
(3)⇒ (1): Let s be a nilpotent element of R. Then

TorR1 (R/(s), R/Nil(R)) ∼= (s) ∩Nil(R)/sNil(R) = (s)/sNil(R)

is GV-torsion since R/Nil(R) is w-flat by (3) and Proposition 1.7. Thus there
is a GV-ideal J such that sJ ⊆ sNil(R). Since J is a nonnil ideal, Nil(R) =
JNil(R) by Lemma 1.6. Thus sJ ⊆ sNil(R) = sJNil(R) ⊆ sJ . That is,
sJ = sJNil(R). Since sJ is finitely generated, sJ = 0 by Nakayama’s lemma.
Since J ∈ GV(R), s ∈ R is GV-torsion free, then s = 0. Consequently,
Nil(R) = 0 and R is an integral domain. �

Recall from [11] that a ring R is said to be a DW ring if every ideal of R
is a w-ideal. Then a ring R is a DW ring if and only if every R-module is
a w-module, if and only if GV(R) = {R} (see [11, Theorem 3.8]). Certainly
if R is a DW ring, every φ-w-flat module is φ-flat. Conversely, this property
characterizes DW rings.

Theorem 1.10. The following statements are equivalent for an NP-ring R:

(1) R is a DW ring;
(2) every φ-w-flat module is φ-flat;
(3) every w-flat module is φ-flat.

Proof. (1)⇒ (2)⇒ (3): Trivial.
(3) ⇒ (1): For any J ∈ GV(R), R/J is GV-torsion, and thus w-flat. By

(3), R/J is φ-flat. Since every GV-ideal J is a nonnil ideal of R, we have

TorR1 (R/J,R/J) ∼= J/J2 = 0. It follows that J is a finitely generated idempo-
tent ideal, and thus J is projective. So J = Jw = R by [14, Exercise 6.10(1)]
and thus R is a DW ring by [14, Theorem 6.3.12]. �

Some non-integral domain examples are provided by the idealization con-
struction R(+)M where M is an R-module (see [6]). We recall this construc-
tion. Let R(+)M = R⊕M as an R-module, and define

(1) (r,m)+(s, n)=(r + s,m+ n).
(2) (r,m)(s, n)=(rs, sm+ rn).
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Under these definitions, R(+)M becomes a commutative ring with identity.
Denote by (0 :R M) the set {r ∈ R | rM = 0}. Now we compute some examples
of GV-ideals of R(+)M .

Proposition 1.11. Let T be a commutative ring and E a w-module over T
such that (0 :T E) = 0. Set R = T (+)E. Then J(+)E is a GV-ideal of R for
any J ∈ GV(T ).

Proof. Let J be a GV-ideal of T . Then we claim that J(+)E ∈ GV(R). Indeed,
since T (+)E/J(+)E ∼= T/J , for any i = 0, 1, we have

ExtiR(T (+)E/J(+)E,R) ∼= ExtiT (T/J,HomR(T,R)).

Note that

HomR(T,R) = HomR(R/0(+)E,R) ∼= 0(+)E ∼= E

since (0 :T E) = 0. Thus ExtiR(T (+)E/J(+)E,R) ∼= ExtiT (T/J,E) for any
i = 0, 1. If J ∈ GV(T ) then J(+)E ∈ GV(R) since E is a w-module over
T . �

Now we give an example to show the notion of φ-w-flat modules is a strict
generalization of φ-flat modules and w-flat modules.

Example 1.12. Let D be a non-DW integral domain and K its quotient field.
Then R = D(+)K is a φ-ring (see [2, Remark 1]). However, by Proposition
1.11, R is neither an integral domain nor a DW ring. Consequently, there is a
φ-w-flat module over R which is neither φ-flat nor w-flat by Theorem 1.9 and
Theorem 1.10.

2. Homological properties of φ-w-flat modules

Let R be a ring. It is well known that the flat dimension of an R-module M is
defined as the shortest flat resolution of M and the weak global dimension of R
is the supremum of the flat dimensions of all R-modules. The w-flat dimension
w-fdR(M) of an R-module M and w-weak global dimension w-w.gl.dim(R) of
a ring R were introduced and studied in [16]. We now introduce the notion of
φ-w-flat dimension of an R-module as follows.

Definition 2.1. Let R be a ring and M an R-module. We write φ-w-fdR(M) ≤
n (φ-w-fd abbreviates φ-w-flat dimension) if there is a w-exact sequence of R-
modules

(♦) 0→ Fn → · · · → F1 → F0 →M → 0,

where each Fi is w-flat for i = 0, . . . , n − 1 and Fn is φ-w-flat. The w-exact
sequence (♦) is said to be a φ-w-flat w-resolution of length n of M . If such
finite w-resolution does not exist, then we say φ-w-fdR(M) = ∞; otherwise,
define φ-w-fdR(M) = n if n is the length of the shortest φ-w-flat w-resolution
of M .
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It is obvious that an R-module M is φ-w-flat if and only if φ-w-fdR(M) = 0.
Certainly, φ-w-fdR(M) ≤ w-fdR(M). If R is an integral domain, then φ-w-
fdR(M) = w-fdR(M).

Lemma 2.2 ([16, Lemma 2.2]). Let N be an R-module and 0 → A → F →
C → 0 a w-exact sequence of R-modules with F a w-flat module. Then for
any n > 0, the induced map TorRn+1(C,N)→ TorRn (A,N) is a w-isomorphism.

Hence, TorRn+1(C,N) is GV-torsion if and only if so is TorRn (A,N).

Proposition 2.3. Let R be an NP-ring. The following statements are equiv-
alent for an R-module M :

(1) φ-w-fdR(M) ≤ n;

(2) TorRn+k(M,N) is GV-torsion for all φ-torsion R-modules N and all
k > 0;

(3) TorRn+1(M,N) is GV-torsion for all φ-torsion R-modules N ;

(4) TorRn+1(M,R/I) is GV-torsion for all nonnil ideals I;

(5) TorRn+1(M,R/I) is GV-torsion for all finite type nonnil ideals I;
(6) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where

F0, F1, . . . , Fn−1 are flat R-modules, then Fn is φ-w-flat;
(7) if 0 → Fn → · · · → F1 → F0 → M → 0 is an w-exact sequence, where

F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is φ-w-flat;
(8) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where

F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is φ-w-flat;
(9) if 0 → Fn → · · · → F1 → F0 → M → 0 is an w-exact sequence, where

F0, F1, . . . , Fn−1 are flat R-modules, then Fn is φ-w-flat.

Proof. (1) ⇒ (2): We prove (2) by induction on n. For the case n = 0, (2)
holds by Theorem 1.4 as M is φ-w-flat. If n > 0, then there is a w-exact
sequence 0 → Fn → · · · → F1 → F0 → M → 0, where each Fi is w-flat for
i = 0, . . . , n − 1 and Fn is φ-w-flat. Set K0 = ker(F0 → M). Then both
0 → K0 → F0 → M → 0 and 0 → Fn → Fn−1 → · · · → F1 → K0 → 0
are w-exact, and φ-w-fdR(K0) ≤ n − 1. By induction, TorRn−1+k(K0, N) is
GV-torsion for all φ-torsion R-modules N and all k > 0. Thus, it follows from
Lemma 2.2 that TorRn+k(M,N) is GV-torsion.

(2)⇒ (3)⇒ (4)⇒ (5): Trivial.
(5) ⇒ (6): Let K0 = ker(F0 → M) and Ki = ker(Fi → Fi−1), where

i = 1, . . . , n − 1. Then Kn−1 = Fn. Since all F0, F1, . . . , Fn−1 are flat,
TorR1 (Fn, R/I) ∼= TorRn+1(M,R/I) is GV-torsion for all finite type nonnil ideal
I. Hence Fn is a φ-w-flat module by Theorem 1.4.

(6)⇒ (1): Obvious.
(3) ⇒ (7): Set Ln = Fn and Li = Im(Fi → Fi−1), where i = 1, . . . , n − 1.

Then both 0→ Li+1 → Fi → Li → 0 and 0→ L1 → F0 →M → 0 are w-exact
sequences. By using Lemma 2.2 repeatedly, we can obtain that TorR1 (Fn, N) is
GV-torsion for all φ-torsion R-modules N . Thus Fn is φ-w-flat.

(7)⇒ (8)⇒ (6), (7)⇒ (9) and (9)⇒ (6): Trivial. �
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Definition 2.4. The φ-w-weak global dimension of a ring R is defined by

φ-w-w.gl. dim(R) = sup{wφ-fdR(M) |M is an R-module}.

Obviously, by definition, φ-w-w.gl.dim(R) ≤ w-w.gl.dim(R). Notice that if
R is an integral domain, then φ-w-w.gl.dim(R) = w-w.gl.dim(R).

Proposition 2.5. Let R be an NP-ring. The following statements are equiv-
alent for R.

(1) φ-w-fdR(M) ≤ n for all R-modules M .

(2) TorRn+k(M,N) is GV-torsion for all R-modules M and φ-torsion N
and all k > 0.

(3) TorRn+1(M,N) is GV-torsion for all R-modules M and φ-torsion N .

(4) TorRn+1(M,R/I) is GV-torsion for all R-modules M and nonnil ideals
I of R.

(5) TorRn+1(M,R/I) is GV-torsion for all R-modules M and finite type
nonnil ideals I of R.

(6) φ-w-fdR(R/I) ≤ n for all nonnil ideals I of R.
(7) φ-w-fdR(R/I) ≤ n for all finite type nonnil ideals I of R.
(8) φ-w-w.gl.dim(R) ≤ n.

Consequently, the φ-w-weak global dimension of R is determined by the formu-
las:

φ-w-w.gl. dim(R) = sup{φ-w-fdR(R/I) | I is a nonnil ideal of R}
= sup{φ-w-fdR(R/I) | I is a finite type nonnil ideal of R}.

Proof. (1)⇔ (8) and (1)⇒ (6)⇒ (7)⇒ (8): Trivial.
(1)⇒ (2) and (5)⇒ (1): Follows from Proposition 2.3.
(2)⇒ (3)⇒ (4)⇒ (5): Trivial.
(8)⇒ (1): Let M be an R-module and 0→ Fn → · · · → F1 → F0 →M → 0

an exact sequence, where F0, F1, . . . , Fn−1 are flat R-modules. To complete the
proof, it suffices, by Proposition 2.3, to prove that Fn is φ-w-flat. Let I be a
finite type nonnil ideal of R. Thus φ-w-fdR(R/I) ≤ n by (8). It follows from

Lemma 2.2 that TorR1 (R/I, Fn) ∼= TorRn+1(R/I,M) is GV-torsion. �

3. Rings with φ-w-weak global dimension at most one

It is well known that a commutative ring R with weak global dimension 0
is exactly a von Neumann regular ring, equivalently a ∈ (a2) for any a ∈ R. It
was proved in [12, Theorem 4.4] that a commutative ring R has w-weak global
dimension 0, if and only if a ∈ (a2)w for any a ∈ R, if and only if Rm is a field
for any maximal w-ideal m of R, if and only if R is a von Neumann regular
ring. Recall from [19] that a φ-ring R is said to be φ-von Neumann regular
provided that every R-module is φ-flat. A φ-ring R is φ-von Neumann regular,
if and only if there is an element x ∈ R such that a = xa2 for any non-nilpotent
element a ∈ R, if and only if R/Nil(R) is a von Neumann regular ring, if and
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only if R is zero-dimensional (see [19, Theorem 4.1]). Now, we give some more
characterizations of φ-von Neumann regular rings.

Theorem 3.1. Let R be a φ-ring. The following statements are equivalent for
R:

(1) φ-w-w.gl.dim(R) = 0;
(2) every R-module is φ-w-flat;
(3) a ∈ (a2)w for any non-nilpotent element a ∈ R;
(4) w-dim(R) = 0;
(5) dim(R) = 0;
(6) R is φ-von Neumann regular.

Proof. (1)⇔ (2) By definition.
(2)⇒ (3): Let a be a non-nilpotent element in R. Then Ra is a nonnil ideal

of R. It follows that TorR1 (R/Ra,R/Ra) is GV-torsion since R/Ra is φ-torsion
and φ-w-flat. That is, Ra/Ra2 is GV-torsion, and thus a ∈ Ra ⊆ (Ra)w =
(Ra2)w.

(3) ⇒ (4): Since R is a φ-ring, Nil(R) is the minimal prime w-ideal R. We
claim that the ring Rm := (R/Nil(R))m/Nil(R) is a field for any m ∈ w-Max(R).

Indeed, let a be a non-nilpotent element in R. By (3), (a)w = (a2)w. Thus

(a)m = (a2)m. We have (a)m = (a2)m as an ideal of Rm. So Rm is a local
von Neumann regular ring, and thus a field. Note that Rm = Rm/Nil(Rm). It
follows that Rm is 0-dimensional (see [6, Theorem 3.1]). Thus w-dim(R) = 0.

(4) ⇒ (1): By Theorem 1.4, we just need to show TorR1 (R/I,R/J) is GV-
torsion for all nonnil ideals I and all ideals J of R. Since R is a φ-ring with
w-dim(R) = 0, Nil(R) is the unique maximal w-ideal of R. We just need to

show TorR1 (R/I,R/J)Nil(R) = 0. That is, (I ∩ J/IJ)Nil(R) = 0.
If J is a nonnil ideal of R, there are non-nilpotent elements s ∈ I and t ∈ J

such that st ∈ IJ . Since st 6∈ Nil(R), (I ∩ J/IJ)Nil(R) = 0. If J is a nilpotent

ideal of R, I ∩ J = J . Thus TorR1 (R/I,R/J)Nil(R) = (I ∩ J/IJ)Nil(R) =
(J/IJ)Nil(R). Let s be a non-nilpotent element in I. We have s(j + IJ) =
0 + (IJ) in J/IJ for any j ∈ J . Thus (I ∩ J/IJ)Nil(R) = 0.

(4) ⇒ (5): By (4), Nil(R) is the unique w-maximal ideal of R. If Nil(R)
is a maximal ideal of R, (6) holds obviously. Otherwise, there is a non-unit
element a which is not nilpotent. Since (a) is not a GV-ideal, there is maximal
w-ideal m such that Nil(R) ( (a) ⊆ (a)w ⊆ m, Thus w-dim(R) ≥ 1, which is a
contradiction.

(5)⇒ (4): Trivial.
(5)⇔ (6): See [19, Theorem 4.1]. �

Recall from [6] that a ring R is said to be a Prüfer ring provided that
every finitely generated regular ideal I is invertible, i.e., II−1 = R where
I−1 = {x ∈ T (R) | Ix ⊆ R}, or equivalently, there is a fractional ideal J of R
such that IJ = R. It is well known that an integral domain is a Prüfer domain
if and only if the weak global dimension of R ≤ 1. Recall that a ring R is
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said to be a PvMR if every finitely generated regular ideal I is w-invertible,
i.e., (II−1)w = R, or equivalently, there is a fractional ideal J of R such that
(IJ)w = R. PvMDs are exactly integral domains which are PvMRs. It is
known that an integral domain R is a PvMD if and only if Rm is a valuation
domain for each m ∈ w-Max(R) if and only if w-w.gl.dim(R) ≤ 1 (see [12,16]).

Following [4], a φ-ring R is said to be a φ-chain ring (φ-CR for short) if
for any a, b ∈ R − Nil(R), either a | b or b | a in R. A φ-ring R is said to be
a φ-Prüfer ring if every finitely generated nonnil ideal I is φ-invertible, i.e.,
φ(I)φ(I−1) = φ(R). It follows from [1, Corollary 2.10] that a φ-ring R is φ-
Prüfer, if and only if Rm is a φ-CR for any maximal ideal m of R, if and only
if R/Nil(R) is a Prüfer domain, if and only if φ(R) is Prüfer. For a strongly
φ-ring R, Zhao [18, Theorem 4.3] showed that R is a φ-Prüfer ring if and only
if all φ-torsion free R-modules are φ-flat, if and only if each submodule of a
φ-flat R-module is φ-flat, if and only if each nonnil ideal of R is φ-flat.

Let R be a φ-ring. Recall from [7] that a nonnil ideal J of R is said to be
a φ-GV-ideal (resp., φ-w-ideal) of R if φ(J) is a GV-ideal (resp., w-ideal) of
φ(R). A φ-ring R is called a φ-SM ring if it satisfies the ACC on φ-w-ideals.
An ideal I of R is φ-w-invertible if (φ(I)φ(I)−1)W = φ(R) where W is the
w-operation of φ(R). A φ-ring is φ-Krull provided that any nonnil ideal is φ-
w-invertible (see [7, Theorem 2.23]). By extending φ-Krull rings and PvMDs,
we give the definition of φ-Prüfer v-multiplication rings.

Definition 3.2. Let R be a φ-ring. R is said to be a φ-Prüfer v-multiplication
ring (φ-PvMR for short) provided that any finitely generated nonnil ideal is
φ-w-invertible.

Now we characterize φ-Prüfer multiplication rings in terms of φ-w-flat mod-
ules.

Theorem 3.3. Let R be a φ-ring. The following statements are equivalent for
R:

(1) R is a φ-PvMR;
(2) Rm is a φ-CR for any m ∈ w-Max(R);
(3) R/Nil(R) is a PvMD;
(4) φ(R) is a PvMR.

Moreover, if R is a strongly φ-ring, all above are equivalent to
(5) R is a φ-w-w.gl.dim(R) ≤ 1;
(6) every submodule of a w-flat module is φ-w-flat;
(7) every submodule of a flat module is φ-w-flat;
(8) every ideal of R is φ-w-flat;
(9) every nonnil ideal of R is φ-w-flat;
(10) every finite type nonnil ideal of R is φ-w-flat.

Proof. Let R be a φ-ring. Denote by W , w and w the w-operations of φ(R),
R and R/Nil(R) respectively. We will prove the equivalences of (1)-(4) and
(5)-(10).
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(1) ⇒ (4): Let K be a finitely generated regular ideal of φ(R). Then
K = φ(I) for some finitely generated nonnil ideal I of R by [1, Lemma 2.1].
Since R is a φ-PvMR, (KK−1)W = (φ(I)φ(I)−1)W = φ(R). Thus φ(R) is a
PvMR.

(4)⇒ (1): Let I be a finitely generated nonnil ideal of R. We will show I is
φ-w-invertible. By [1, Lemma 2.1], φ(I) is a finitely generated regular ideal of
φ(R). Thus (φ(I)φ(I)−1)W = φ(R) since φ(R) is a PvMR.

(2)⇔ (3): By [1, Theorem 3.7, Corollary 2.10], Rm is a φ-CR for any m ∈ w-
Max(R) if and only if Rm/Nil(Rm) = (R/Nil(R))m is a valuation domain for
any m ∈ w-Max(R) if and only if R/Nil(R) is a PvMD (see [12, Theorem 4.9]).

(3)⇒ (4): Note that φ(R)/Nil(φ(R)) ∼= R/Nil(R) is a PvMD (see [1, Lemma
2.4]). Let φ(I) be a finitely generated regular ideal of φ(R). Then, by [1,
Lemma 2.1], I is a nonnil ideal of R. Then I = I/Nil(R) is w-invertible over

R = R/Nil(R) by (3). That is, (II−1)w = R. There is a GV ideal J of R such

J ⊆ II−1 (see [14, Exercise 6.10(2)]). So J ⊆ II−1 where J is a φ-GV ideal
of R by [7, Lemma 2.3]. Thus φ(J) ⊆ φ(I)φ(I)−1. Since φ(J) ∈ GV(φ(R)),
(φ(I)φ(I)−1)W = φ(R).

(4) ⇒ (3): Suppose φ(R) is a PvMR. Let I is a finitely generated nonzero
ideal of R. Then I is a nonnil ideal of R. Thus φ(I) is a finitely generated
regular ideal of φ(R) by [1, Lemma 2.1]. So (φ(I)φ(I)−1)W = φ(R) by (4).

Hence J ⊆ II−1 in R for some φ-GV ideal J of R and thus J ⊆ II−1 in R. By
[7, Lemma 2.3], J ∈ GV(R), and thus (II−1)w = R. So R/Nil(R) is a PvMD.

(5) ⇒ (6): Let K be a submodule of a w-flat module F . Then φ-w-
fdR(F/K) ≤ 1 by (5). Thus K is φ-w-flat by Proposition 2.3.

(6)⇒ (7)⇒ (8)⇒ (9)⇒ (10): Trivial.
(10)⇒ (5): Let I be a finite type nonnil ideal of R. Then φ-w-fdR(R/I) ≤ 1

by Proposition 2.3. It follows from Proposition 2.5 that φ-w-w.gl.dim(R) ≤ 1.
Now, let R be a strongly φ-ring.
(2)⇒ (9): Let m be a maximal w-ideal of R and I a nonnil ideal of R. Then

Im is a nonnil ideal of Rm by Lemma 1.1 and thus is φ-flat by [18, Theorem
4.3]. So I is φ-w-flat by Theorem 1.4.

(9)⇒ (2): Let m be a maximal w-ideal of R , Im a nonnil ideal of Rm. Then
I is a nonnil ideal of R by Lemma 1.1. By (9), I is φ-w-flat and so Im is φ-flat
by Theorem 1.4. Thus Rm is a φ-CR by [18, Theorem 4.3]. �

Corollary 3.4. Suppose R is a φ-ring. Then R is a φ-Krull ring if and only
if R is both a φ-PvMR and a φ-SM ring.

Proof. By [7, Theorem 2.4] a φ-ring R is a φ-SM ring if and only if R/Nil(R) is
an SM domain. A φ-ring R is a φ-Krull ring if and only if R/Nil(R) is a Krull
domain (see [2, Theorem 3.1]). Since R is a Krull domain if and only if R is an
SM PvMD (see [8, Theorem 7.9.3]), the equivalence holds by Theorem 3.3. �

Corollary 3.5. Suppose R is a strongly φ-ring. Then R is a φ-PvMR if and
only if R is a PvMR.



ON φ-w-FLAT MODULES AND THEIR HOMOLOGICAL DIMENSIONS 1051

Proof. Suppose R is a φ-PvMR and let I be a finitely generated regular ideal
of R. Then I is a finitely generated regular ideal of R. By Theorem 3.3, R
is a PvMD. Then (II−1)w = R. Thus there is a GV-ideal J of R with J

finitely generated over R such that J ⊆ II−1. Since R is a strongly φ-ring, J
is a GV-ideal of R by [7, Lemma 2.11]. Since J ⊆ II−1 in R, (II−1)w = R.
Assume R is a PvMR. Since R is a strongly φ-ring, φ(R) = R is a PvMR.
Thus R is a φ-PvMR by Theorem 3.3. �

The condition that R is a strongly φ-ring in Corollary 3.5 can’t be removed
by the following example.

Example 3.6. Let D be an integral domain which is not a PvMD and K its
quotient field. Since K/D is a divisible D-module, the ring R = D(+)K/D is a
φ-ring but not a strongly φ-ring (see [2, Remark 1]). Since Nil(R) = 0(+)K/D,
we have R/Nil(R) ∼= D is not a PvMD. Thus R is not a φ-PvMR by Theorem
3.3. Denote by U(R) and U(D) the sets of unit elements of R and D respec-
tively. Since Z(R) = {(r,m) | r ∈ Z(D) ∪ Z(K/D)} = R − U(D)(+)K/D =
R−U(R), R is a PvMR obviously.
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[1] D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J.

Math. 30 (2004), no. 2, 331–343.

[2] , On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4,
1007–1022.

[3] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465–1474.

https://doi.org/10.1080/00927879908826507

[4] , On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001),

no. 4, 725–736.
[5] A. Badawi and T. G. Lucas, On Φ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1–32.

[6] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in

Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
[7] H. Kim and F. Wang, On φ-strong Mori rings, Houston J. Math. 38 (2012), no. 2,

359–371.

[8] , On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp.
https://doi.org/10.1142/S0219498813501338

[9] B. Stenström, Rings of Quotients, Springer-Verlag, New York, 1975.

[10] F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1,
111–120.

[11] , Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ.
33 (2010), 1–9.

[12] F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math.

Soc. 51 (2014), no. 3, 509–525. https://doi.org/10.4134/JKMS.2014.51.3.509
[13] , Two generalizations of projective modules and their applications, J. Pure Appl.

Algebra 219 (2015), no. 6, 2099–2123. https://doi.org/10.1016/j.jpaa.2014.07.025

https://doi.org/10.1080/00927879908826507
https://doi.org/10.1142/S0219498813501338
https://doi.org/10.4134/JKMS.2014.51.3.509
https://doi.org/10.1016/j.jpaa.2014.07.025


1052 X. ZHANG AND W. ZHAO

[14] , Foundations of commutative rings and their modules, Algebra and Applications,

22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7

[15] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Al-
gebra 25 (1997), no. 4, 1285–1306. https://doi.org/10.1080/00927879708825920

[16] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean
Math. Soc. 52 (2015), no. 4, 1327–1338. https://doi.org/10.4134/BKMS.2015.52.4.

1327

[17] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean
Math. Soc. 48 (2011), no. 1, 207–222. https://doi.org/10.4134/JKMS.2011.48.1.207
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