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ALMOST RIGIDITY OF CONVEX HYPERSURFACES VIA

THE EXTINCTION TIME OF MEAN CURVATURE FLOW

Xian-Tao Huang

Abstract. We prove that if a compact convex hypersurface of Rn+1 has

almost maximal extinction time when it is evolved by the mean curvature
flow, then it must be nearly round in the C0-norm.

1. Introduction

Denote the sphere Sn by Σ. Let F0 : Σ→ Rn+1 be a smooth embedding such
that Σ0 = F0(Σ) is a convex hypersurface of Rn+1. Consider a one-parameter
family of smooth embedding F : Σ× [0, T )→ Rn+1 solving the mean curvature
flow with initial value F0, i.e.,{

∂
∂tF = −Hν,
F (x, 0) = F0(x).

(1)

Though out this note, ν(x, t), H(x, t) and A(x, t) denote the outer unit normal,
the mean curvature and the second fundamental form of Σt = Ft(Σ) at Ft(x) =
F (x, t) respectively. By the famous paper of Huisken ([6]), Σt remains convex,
and the flow exists on a maximal time interval, which is denoted by [0, Te),
such that Σt shrink to a point as t ↑ Te. Recall that under the mean curvature
flow, the mean curvature satisfies the following equation:

∂H

∂t
= 4H + |A|2H.(2)

Define ω : [0, Te)→ R by

ω(t) = min
x∈Σ

H(x, t).(3)

Then ω(t) satisfies

dω(t)

dt
≥ ω3(t)

n
.(4)
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If we assume Σ0 satisfies H ≥ n, i.e., ω(0) ≥ n, then we obtain

ω(t) ≥ n√
1− 2nt

,(5)

thus Te ≤ 1
2n . By the strong maximum principle, Te = 1

2n holds if and only if
Σ0 is a round sphere of radius 1.

In this short note, we prove that, if the extinction time Te is very close to
1

2n , then Σ0 is nearly round.

Though out this note, for any r > 0, we denote by Sn(r) = {x ∈ Rn+1 |
|x| = r}, Bn+1(r) = {x ∈ Rn+1 | |x| < r}.

Theorem 1.1. For any η > 0, there exists τ > 0 such that if F0 : Σ → Rn+1

is an embedding satisfying

(A) Σ0 = F0(Σ) is a convex hypersurface in Rn+1, H ≥ n on Σ0;

and the mean curvature flow with initial value F0 has extinction time Te >
1

2n − τ , then there exists a vector v ∈ Rn+1 such that v + Σ0 is η-close to the

unit sphere Sn(1) in the C0-norm.

Let Σ0 ⊂ Rn+1 be a convex compact hypersurface with the origin 0 contained
in the interior of the domain enclosed by Σ0, we say Σ0 is η-close to Sn(1) in
the C0-norm if, when we express Σ0 as the graph of a function u : Sn(1)→ R+

via the polar coordinate, we have |u− 1| < η.
The C0-closeness in Theorem 1.1 is the optimal conclusion on the regularity,

which can be seen from the following example. Let Σ0 be a smooth convex
hypersurface lying in the interior of Bn+1(1) and suppose Σ0 is δ-close to Sn(1)
in the C0-norm. It is easy to see H ≥ n on Σ0. Since Σ′0 = Sn(1 − δ) lies in
the domain bounded by Σ0, under the mean curvature flow, Σ′t still lies in the
domain bounded by Σt, thus the extinction time of Σ0 satisfies Te >

1
2n − δ1,

where δ1 → 0 as δ → 0.
A similar property as in Theorem 1.1 holds for solutions of Ricci flow, see

Theorem 1.1 in Bamler and Maximo’s paper [1]. Theorem 1.1 is motivated by
[1], and its proof follows the ideas in [1] closely. There are also many almost
rigidity type theorems for Riemannian manifolds, see e.g. [2, 3] etc.

Acknowledgments. The author is grateful to the anonymous referees for
careful reading and giving valuable suggestions.

2. Proof of Theorem 1.1

Before the proof, we fix some notations. We denote by T0 = 1
4n , ρ(t) =

n√
1−2nt

. For the mean curvature flow solution F : Σ×[0, T )→ Rn+1, we denote

by gt the induced metric on Σ by the embedding Ft, and by dt the distance
induced by gt. We use Bgt(x, r) to denote the geodesic ball with respect to
the metric gt. If we consider a sequence of solutions of mean curvature flow
Fi : Σ × [0, T ) → Rn+1, we use the notations Fi,t, Hi(x, t), Ai(x, t), gi,t, di,t
etc. to emphasize parameter i.
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We recall the Harnack inequality for convex mean curvature flow due to
Hamilton ([5]), which is very important in the argument of this note:

Proposition 2.1. Let F : Σ× (0, T )→ Rn+1 be a convex solution to the mean
curvature flow. Then for any 0 < t1 < t2 < T , we have

H(x1, t1) ≤
√
t2
t1

exp

(
d2
t1(x1, x2)

4(t2 − t1)

)
H(x2, t2).(6)

In the remaining part of this paper, we go to the proof of Theorem 1.1.

Lemma 2.2. For any small positive number δ, there exists τ = τ(n, δ) > 0
such that if Ft is a mean curvature flow with initial value F0 satisfying (A) and
has extinction time Te >

1
2n−τ , then ω(t) < ρ(t)+δ holds for every t ∈ (0, T0].

Proof. Given δ > 0, suppose there is some t̄ ∈ (0, T0] such that ω(t̄) ≥ ρ(t̄) + δ,
then by (4), for any t ≥ t̄, it holds

ω(t) ≥
(

1

(ρ(t̄) + δ)−2 − 2
n (t− t̄)

) 1
2

.(7)

Thus

Te ≤ t̄+
n

2
(ρ(t̄) + δ)−2(8)

= t̄+
1− 2nt̄

2n

1

(1 +
√

1−2nt̄
n δ)2

≤ t̄+
1− 2nt̄

2n

1

1 + C1δ

≤ t̄+
1− 2nt̄

2n
(1− C2δ)

≤ 1

2n
− C3δ,

where C1, C2, C3 are positive numbers depending only on n, and we assume δ
is sufficiently small, and use t̄ ∈ (0, 1

4n ] in the last three inequalities. In other

word, if Te >
1

2n − C3δ, then ω(t) < ρ(t) + δ holds for every t ∈ (0, T0]. �

The following lemma is similar to Lemma 2.3 of [1], and the proof here is a
modification of [1].

Lemma 2.3. There exists a positive constant K = K(n) such that, for any
t2 ∈ (0, T0], there exists t1 ∈ ( t22 , t2) depending only on t2 and n such that, let

F : Σ × [0, T0) → Rn+1 be a mean curvature flow with initial value satisfying
(A), if there exists a point x̄ ∈ Σ such that H(x̄, t2) < ρ(t2) + 1, then there
exists a bounded nonnegative Lipschitz function u(x, t) defined on Σ × [t1, t2)
satisfying:

(a) ( d
dt− −∆gt)u(x, t) ≤ 0 in the barrier sense;

(b) ∀t ∈ [t1, t2), u(x, t) is supported in Bgt(x̄,K
√
t2 − t);
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(c) 0 ≤ u(·, t) ≤ 1 and u(x̄, t) =
√
t2 − t.

Proof. Let ϕ : [0,∞)→ [0,∞) be a fixed smooth function with ϕ = 1 on [0, 1],
ϕ ≥ 1

2 on [0, 2], ϕ = 0 on [3,∞), ϕ′ ≤ 0 on [0,∞), and ϕ′′ ≥ 0 on [2,∞).
Then we can always choose α = α(n) > 0 (in fact, α also depends on the fixed
function ϕ) sufficiently small such that

−1

2
ϕ(r) +

1

2
rϕ′(r) ≤ 4αrϕ′′(r) + 2αnϕ′(r)(9)

holds for every r ≥ 0. One can easily check that such α always exists, see the
Appendix of [1].

Then we fix K = K(n) such that αK2 > 3.
By the Harnack inequality (6) and the convexity of the hypersurfaces, for

any t ∈ ( t22 , t2) and x ∈ Bgt(x̄, 2K
√
t2 − t), it holds

|A(x, t)| ≤ H(x, t) ≤
√
t2
t

exp

(
d2
t (x, x̄)

4(t2 − t)

)
(ρ(t2) + 1) ≤ C(n, t2).(10)

For any x, y ∈ Bgt(x̄,K
√
t2 − t), let γ : [0, dt(x, y)]→ Bgt(x̄, 2K

√
t2 − t) be

a path connecting x and y which is a shortest geodesic with respect to gt and
parametrized by arc length. Let Lt̃ be the length of γ with respect to gt̃, where
t̃ is in a small neighborhood of t, then we have

d

dt̃

∣∣∣∣
t̃=t

Lt̃ =

∫ dt(x,y)

0

(
∂

∂t̃

∣∣∣∣
t̃=t

√
gt̃(

dγ

ds
,
dγ

ds
)

)
ds(11)

= −
∫ dt(x,y)

0

HA(
dγ

ds
,
dγ

ds
) ≥ −C2dt(x, y),

where we use (10) in the last inequality. Thus by (11),

d

dt̃−

∣∣∣∣
t̃=t

dt̃(x, y) = lim
t̃→t−

dt̃(x, y)− dt(x, y)

t̃− t
(12)

≥ lim
t̃→t−

Lt̃ − Lt
t̃− t

≥ −C2dt(x, y).

Since t 7→ dt(x, y) is a Lipschitz function, it is differentiable for almost every t,
and at those differentiable point, it holds

∂

∂t
dt(x, y) =

d

dt−
dt(x, y) ≥ −C2dt(x, y).(13)

The function u(x, t) will be chosen to have the form

u(x, t) =
√
t2 − tϕ

(
α
d2
t (x̄, x)

t2 − t
)
.(14)

It is easy to see that u satisfies (b) and (c).
By direct computation,

(
d

dt−
−∆gt)u(x, t) ≤− 1

2
√
t2 − t

ϕ+ α
d2
t

(t2 − t)
3
2

ϕ′ − 2αC2 d2
t√

t2 − t
ϕ′(15)
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− 4α2 d2
t

(t2 − t)
3
2

ϕ′′ − 2nα
1√
t2 − t

ϕ′

holds in the barrier sense, where we use (12) and the Laplacian comparison
Theorem (recall that (Σ, gt) has positive sectional curvature). In (15), dt is
short for dt(x̄, x).

Choose t1 ∈ ( t22 , t2) such that (t2 − t1)C2 < 1
4 . Recall that it holds ϕ′ ≤ 0

and (9), we have ( d
dt− −∆gt)u(x, t) ≤ 0 on Σ× [t1, t2). �

Lemma 2.4. Suppose K is the constant given in Lemma 2.3. For any t2 ∈
(0, T0], suppose t1 ∈ ( t22 , t2) is given in Lemma 2.3. Given θ > 0 small, there

exists δ = δ(θ, t2, n) ∈ (0, 1) such that, suppose F : Σ × [0, T0) → Rn+1 is a
mean curvature flow with initial value satisfying (A), if there exists x̄ ∈ Σ such
that H(x̄, t2) ≤ ρ(t2) + δ, then there exists y ∈ Bgt1 (x̄,K

√
t2 − t1) satisfying

H(y, t1) ≤ ρ(t1) + θ.

Proof. Suppose there exists a small θ such that, for any i there exists a mean
curvature flow Fi : Σ × [0, T0) → Rn+1 with initial value satisfying (A), and
there exists x̄i ∈ Σ such that ρ(t2) ≤ Hi(x̄i, t2) ≤ ρ(t2) + 1

i , but Hi(y, t1) >

ρ(t1) + θ for any y ∈ Bgi,t1 (x̄i,K
√
t2 − t1).

Let ui(x, t) : Σ× [t1, t2) → R+ be the functions constructed in Lemma 2.3.
Thus

d

dt−
(
Hi(x, t)− θui(x, t)

)
(16)

≥ ∆
(
Hi(x, t)− θui(x, t)

)
+

1

n
H3
i (x, t)

≥ ∆
(
Hi(x, t)− θui(x, t)

)
+

1

n

(
Hi(x, t)− θui(x, t)

)3
.

Note that for any x ∈ Σ,

Hi(x, t1) ≥ ρ(t1) + θui(x, t1),(17)

with the strict inequality holds for x ∈ Bgi,t1 (x̄i,K
√
t2 − t1). Thus by the

maximum principle, for any t ∈ (t1, t2), we have

Hi(x, t) > ρ(t) + θui(x, t).(18)

In particular,

Hi(x̄i, t) > ρ(t) + θ
√
t2 − t.(19)

On the other hand, by Proposition 2.1, for any t ∈ [t1, t2],

Hi(x̄i, t) ≤
√
t2
t
Hi(x̄i, t2) ≤

√
t2
t

(ρ(t2) +
1

i
),(20)

hence

ρ(t) + θ
√
t2 − t <

√
t2
t

(ρ(t2) +
1

i
)(21)
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holds for every t ∈ (t1, t2] and any i.
Note that there exists a positive constant C depending on t2 and n such

that |
√

t2
t ρ(t2)− ρ(t)| ≤ C(t2 − t) for every t ∈ [t1, t2]. Let i→∞ in (21), we

have

θ
√
t2 − t ≤ C(t2 − t)(22)

for every t ∈ [t1, t2], which is a contradiction. �

Lemma 2.5. Suppose that K is the constant given in Lemma 2.3. Given
t2 ∈ (0, T0], suppose t1 ∈ ( t22 , t2) is given in Lemma 2.3. Then for any ε > 0,
there exists a δ = δ(ε, t2, n) ∈ (0, 1) satisfying the following property: suppose
F : Σ × [0, T0) → Rn+1 is a mean curvature flow with initial value F0(Σ)
satisfying (A), and there exists some x̄ ∈ Σ satisfying H(x̄, t2) ≤ ρ(t2) + δ,
then

max
x∈Σ
|A(x, t1)− 1

n
ρ(t1)Id| < ε.(23)

Proof. Suppose that on the contrary, there exists ε0 > 0 such that, for any i
there exist a mean curvature flow Fi : Σ × [0, T0) → Rn+1 with initial value
satisfying (A) and x̄i ∈ Σ with Hi(x̄i, t2) ≤ ρ(t2) + 1

i , but the conclusion (23)
fails for ε0.

By Lemma 2.4, there exist points yi ∈ Bgi,t1 (x̄i,K
√
t2 − t1) such that

ρ(t1) ≤ Hi(yi, t1) < ρ(t1) + δi with δi → 0 as i → ∞. Without loss of
generality, we assume Fi,t1(yi) = 0 ∈ Rn+1.

Now we fix D = 16nπ
ρ(t1) . By (6), for any x ∈ Bgi,t1 (yi, D),

Hi(x, t1) ≤
√
t2
t1

exp

(
(K
√
t2 − t1 +D)2

4(t2 − t1)

)
Hi(x̄i, t2) ≤ C(t2, n),(24)

and for any t ∈ [ t12 , t1],

Hi(x, t) ≤
√
t1
t
Hi(x, t1) ≤ C(t2, n).(25)

Thus by the convexity of the hypersurface, for any (x, t) ∈ Bgi,t1 (yi, D)×[ t12 , t1],

we have |Ai(x, t)| ≤ Hi(x, t) ≤ C(t2, n). Furthermore, by the curvature esti-
mate of mean curvature flow (see [4]), for any k ≥ 1, |∇kAi(x, t)| is uniformly
bounded on Bgi,t1 (yi,

D
2 )× [ 3t1

4 , t1].

Thus by the method in [7], we can prove that, after passing to a subsequence
of {i}, there exist an open set U ⊂ Σ and a sequence of diffeomorphisms φi :
U → Ui ⊂ Σ, such that Fi(φi(x), t) converges smoothly to a solution of mean
curvature flow F∞(x, t) : U × [ 3t1

4 , t1] → Rn+1 and satisfy: (a) Bgi,t1 (yi,
D
4 ) ⊂

Ui ⊂ Bgi,t1 (yi,
D
2 ); (b) φ−1

i (yi) → x∞ ∈ U and hence F∞,t1(x∞) = 0; (c)

H∞(x, t) ≥ ρ(t) for every (x, t) ∈ U × [ 3t1
4 , t1], and H∞(x∞, t1) = ρ(t1). By
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the strong maximum principle, we have H∞(x, t) = ρ(t) and hence

A∞(x, t) =
1

n
ρ(t)Id

for every (x, t) ∈ U × [ 3t1
4 , t1]. Thus

max
x∈Bgi,t1

(yi,
D
4 )
|Ai(x, t1)− 1

n
ρ(t1)Id| → 0(26)

as i→∞.
By (26) and Gauss equations, for i sufficiently large, we have

Ricgi,t1 ≥
n− 1

4n2
(ρ(t1))2

on Bgi,t1 (yi,
D
4 ). Then by Myer’s Theorem, Bgi,t1 (yi,

D
4 ) is the whole Σ. Thus

(26) contradicts to the assumption at the begin and we complete the proof. �

We complete the proof of Theorem 1.1 in the following.

Proof of Theorem 1.1. Suppose there exists η > 0 such that for any i, there
exists a sequence of embeddings Fi,0 : Σ→ Rn+1 satisfying the assumption (A)
and the mean curvature flow Fi : Σ× [0, Ti)→ Rn+1 with initial value Fi,0 has
extinction time Ti → 1

2n as i→∞, but there does not exist a vector v ∈ Rn+1

such that v + Fi,0(Σ) can be viewed as a graph over Sn(1) with C0-norm less
than η.

We choose a sequence of times t2,i ∈ (0, T0) such that t2,i → 0 as i → ∞.
By Lemma 2.2, there exists xi ∈ Σ such that Hi(xi, t2,i) < ρ(t2,i) + δi, where
δi → 0 as i→∞.

Then by Lemmas 2.3-2.5, there exist times t1,i ∈ (
t2,i
2 , t2,i) such that

max
x∈Σ
|Ai(x, t1,i)−

1

n
ρ(t1,i)Id| < εi,(27)

where εi → 0 as i→∞.
Then by a compactness argument as in [7], we conclude that, for every i

there is a vector vi ∈ Rn+1 such that, vi+Fi,t1,i(Σ) is ηi-close in the C1,1-norm
to Sn(1) with ηi → 0.

By Proposition 2.1 and (27), for t ∈ (0, t1,i] and x ∈ Σ, we have

Hi(x, t) ≤
√
t1,i
t
Hi(x, t1,i) ≤

C√
t
.(28)

Here and in the following, C denotes a positive constant depending only on n,
but the values of C may change in different lines. By (28),

|Fi(x, 0)− Fi(x, t1,i)| ≤
∫ t1,i

0

|Hi(x, s)|ds ≤
∫ t1,i

0

C√
s
ds ≤ C

√
t1,i,(29)

which implies that Fi,0(Σ) is C
√
t1,i close to Fi,t1,i(Σ) in the Hausdorff distance.

Hence Fi,0(Σ) + vi is C(
√
t1,i + ηi)-close to Sn(1) in the Hausdorff distance.

Because Fi,0(Σ) is convex, Fi,0(Σ) + vi is a graph over Sn(1) with C0-norm
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less than C(
√
t1,i + ηi), which contradicts to the assumption at the beginning

of the proof. The proof is completed. �
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