Acknowledgement
The National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No. 2019R1F1A1059483).
References
- Barbieri MM, Berger JO (2004). Optimal predictive model selection, The Annals of Statistics, 32, 870-897. https://doi.org/10.1214/009053604000000238
- Bhadra A, Datta J, Polson NG, and Willard B (2017). The horseshoe+ estimator of ultra-sparse signals, Bayesian Analysis, 12, 1105-1131. https://doi.org/10.1214/16-BA1028
- Carvalho CM, Polson NG, and Scott JG (2010). The horseshoe estimator for sparse signals, Biometrika, 97, 465-480. https://doi.org/10.1093/biomet/asq017
- Van ES, Oberski DL, and Mulder J (2019). Shrinkage priors for Bayesian penalized regression, Journal of Mathematical Psychology, 89, 31-50. https://doi.org/10.1016/j.jmp.2018.12.004
- George EI and McCulloch RE (1993). Variable selection via gibbs sampling, Journal of the American Statistical Association, 88, 881-889. https://doi.org/10.1080/01621459.1993.10476353
- Hoerl AE and Kennard RW (1970). Ridge regression: applications to nonorthogonal problem, Technometrics, 12, 69-82. https://doi.org/10.1080/00401706.1970.10488635
- Ishwaran H and Rao JS (2005). Spike and slab variable selection: frequentist and Bayesian strategies, The Annals of Statistics, 33, 730-773. https://doi.org/10.1214/009053604000001147
- Lee SY, Pati D, and Mallick BK (2020). Continuous Shrinkage Prior Revisited: A Collapsing Behavior and Remedy, arXiv preprint arXiv:2007.02192.
- Makalic E and Schmidt DF (2015). A simple sampler for the horseshoe estimator, IEEE Signal Processing Letters, 23, 179-182. https://doi.org/10.1109/LSP.2015.2503725
- Makalic E and Schmidt DF (2016). High-Dimensional Bayesian Regularised Regression with the Bayesreg Package, arXiv preprint arXiv:1611.06649.
- Martin R, Mess R, and Walker SG (2017). Empirical bayes posterior concentration in sparse high-dimensional linear models, Bernoulli, 23, 1822-1847.
- Piironen J and Vehtari A (2017). On the hyperprior choice for the global shrinkage parameter in the horseshoe prior. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 905-913.
- Piironen J and Vehtari A (2017) . Sparsity information and regularization in the horseshoe and other shrinkage priors, Electronic Journal of Statistics, 11, 5018-5051. https://doi.org/10.1214/17-EJS1337SI
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x