Acknowledgement
이 연구는 2020학년도 고려대학교 교내학술연구비 지원(K2008341)과 정부(교육부)의 재원으로 한국연구재단의 지원(2019R1F1A1052239, 2019R1A4A1028134)을 받아 수행된 기초연구사업임.
References
- Arjas E and Saarela O (2010). Optimal dynamic regimes: presenting a case for predictive inference, The International Journal of Biostatistics, 6.
- Bellman R (1957). Dynamic Programming, Princeton University Press, Princeton.
- Bertsekas D and Tsitsiklis J (1996). Neuro-Dynamic Programming, Athena Scientific, Massachusetts.
- Breiman L, Friedman JH, Olshen RA, and Stone CJ (1984). Classification and Regression Trees, Wadsworth, California.
- Chakraborty B, Murphy SA, and Strecher V (2010). Inference for non-regular parameters in optimal dynamic treatment regimes, Statistical Methods in Medical Research, 19, 317-343. https://doi.org/10.1177/0962280209105013
- Chakraborty B (2011). Dynamic treatment regimes for managing chronic health conditions: a statistical perspective, American Journal of Public Health, 101, 40-45. https://doi.org/10.2105/AJPH.2010.198937
- Geng Y, Zhang HH, and Lu W (2015). On optimal treatment regimes selection for mean survival time, Statistics in Medicine, 34, 1169-1184. https://doi.org/10.1002/sim.6397
- Gunter L, Zhu J, and Murphy SA (2011). Variable selection for qualitative interactions, Statistical Methodology, 8, 42-55. https://doi.org/10.1016/j.stamet.2009.05.003
- Henderson R, Ansell P, and Alshibani D (2010). Regret-regression for optimal dynamic treatment regimes, Biometrics, 66, 1192-1201. https://doi.org/10.1111/j.1541-0420.2009.01368.x
- Hernan MA, Lanoy E, Costagliola D, and Robins JM (2006). Comparison of dynamic treatment regimes via inverse probability weighting, Basic & Clinical Pharmacology & Toxicology, 98, 237-242. https://doi.org/10.1111/j.1742-7843.2006.pto_329.x
- Kereiakes DJ, Obenchain RL, Barber BL, et al. (2000). Abciximab provides cost-effective survival advantage in high-volume interventional practice, American Heart Journal, 140, 603-610. https://doi.org/10.1067/mhj.2000.109647
- Kravitz RL, Duan N, and Braslow J (2004). Evidence-based medicine, heterogeneity of treatment effects and the trouble with averages, Milbank Quarterly, 82, 661-687. https://doi.org/10.1111/j.0887-378X.2004.00327.x
- Lee BK, Lessler J, and Stuart EA (2010). Improving propensity score weighting using machine learning, Statistics in Medicine, 29, 337-346. https://doi.org/10.1002/sim.3782
- Longford NT and Nelder JA (1999). Statistics versus statistical science in the regulatory process, Statistics in Medicine, 18, 2311-2320. https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2311::AID-SIM257>3.0.CO;2-T
- Lu W, Zhang HH, and Zeng D (2011). Variable selection for optimal treatment decision, Statistical Methods in Medical Research, 22, 493-504. https://doi.org/10.1177/0962280211428383
- Murphy SA (2003). Optimal dynamic treatment regimes (with discussions), Journal of the Royal Statistical Society: Series B, 65, 331-366. https://doi.org/10.1111/1467-9868.00389
- Murphy SA (2005). A generalization error for q-learning, Journal of Machine Learning Research, 6, 1073-1097.
- Pineau J, Bellemare MG, Rush AJ, Ghizaru A, and Murphy SA (2007). Constructing evidence-based treatment strategies using methods from computer science, Drug and Alcohol Dependence, 88, 52-60.
- Polley E, LeDell E, Kennedy C, Lendle S, and van der Laan M (2016). Package 'superlearner', Retrieved from: https://cran.r-project.org/web/packages/SuperLearner/SuperLearner.pdf
- Ridgeway G, McCaffrey D, Morral A, Griffin BA, and Burgette L (2016). Twang: toolkit for weighting and analysis of nonequivalent groups.
- Robins JM, Hernan MA, and Brumback B (2000). Marginal structural models and causal inference in epidemiology, Epidemiology, 11, 550-560. https://doi.org/10.1097/00001648-200009000-00011
- Robins JM, Orellana L, and Rotnitzky A (2008). Estimation and extrapolation of optimal treatment and testing strategies, Statistics in Medicine, 27, 4678-4721. https://doi.org/10.1002/sim.3301
- Robins JM (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, Springer, New York.
- Sorensen TI (1996). Which patients may be harmed by good treatments?, Lancet, 348, 351-352. https://doi.org/10.1016/S0140-6736(05)64988-4
- Thall PF, Millikan RE, and Sung HG (2000). Evaluating multiple treatment courses in clinical trials, Statistics in Medicine, 19, 1011-1028. https://doi.org/10.1002/(SICI)1097-0258(20000430)19:8<1011::AID-SIM414>3.0.CO;2-M
- Therneau T, Atkinson B, and Ripley B (2014). Package 'Rpart', Retrieved from: http://cran.r-project.org/web/packages/rpart/rpart.pdf
- Tian L, Alizaden AA, Gentles AJ, and Tibshirani R (2014). A simple method for estimating interactions between a treatment and a large number of covariates, Journal of the American Statistical Association, 109, 1517-1532. https://doi.org/10.1080/01621459.2014.951443
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B, 58, 267-288.
- Van der Laan MJ and Petersen ML (2007). Causal effect models for realistic individualized treatment and intention to treat rules, The International Journal of Biostatistics, 3.
- Van der Laan MJ, Polley EC, and Hubbard AE (2007). Super learner, Statistical Applications in Genetics and Molecular Biology, 6.
- Wallace MP and Moodie EEM (2015). Doubly-robust dynamic treatment regimen estimation via weighted least squares, Biometrics, 71, 636-644. https://doi.org/10.1111/biom.12306
- Wallace MP, Moodie EEM, and Stephens DA (2017). Model validation and selection for personalized medicine using dynamic-weighted ordinary least squares, Statistical Methods in Medical Research, 26, 1641-1653. https://doi.org/10.1177/0962280217708665
- Westreich D, Lessler J, and Funk MJ (2010). Propensity score estimation: neural networks, support vector machines, decision trees (CART) and meta-classifiers as alternatives to logistic regression, Journal of Clinical Epidemiology, 63, 826-833. https://doi.org/10.1016/j.jclinepi.2009.11.020
- Zhao P and Yu B (2006). On model selection consistency of lasso, Journal of Machine Learning Research, 7, 2541-2563.
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735