DOI QR코드

DOI QR Code

Comparison of deep learning-based autoencoders for recommender systems

오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구

  • Received : 2021.01.21
  • Accepted : 2021.02.15
  • Published : 2021.06.30

Abstract

Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.2019R1F1A1040515, No.2019R1A4A1028134).

References

  1. Aggarwal CC (2018). Neural Networks and Deep Learning, Springer, NewYork.
  2. Ali SM, Nayak GK, Lenka RK, and Barik RK (2018). Movie recommendation system using genome tags and content-based filtering, Advances in Data and Information Sciences(pp.85-94), Springer, NewYork.
  3. Harper FM and Konstan JA (2015). The movielens datasets: History and context, ACM Transactions on Interactive Intelligent Systems, 5, 1-19. https://doi.org/10.1145/2827872
  4. Kingma DP and Welling M (2013). Auto-Encoding Variational Bayes, arXiv preprint arXIV:1312.6114.
  5. Koren Y (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 426-434.
  6. Koren Y, Bell R, and Volinsky C (2009). Matrix factorization techniques for recommender systems, Computer, 42, 30-37. https://doi.org/10.1109/MC.2009.263
  7. Kuchaiev O and Ginsburg B (2017). Training Deep Autoencoders for Collaborative Filtering, arXiv preprint arXiv:1708.01715.
  8. Ni J, Li J, and McAuley J (2019). Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 188-197.
  9. Odaibo S (2019). Tutorial: Deriving the Standard Variational Autoencoder (vae) Loss Function, arXiv preprint arXiv:1907.08956.
  10. Rifai S, Vincent P, Muller X, Glorot X, and Bengio Y (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International Conference on Machine Learning June 2011, 833-840
  11. Schafer JB, Frankowski D, Herlocker J, and Sen S (2007). Collaborative filtering recommender systems, The Adaptive Web(pp. 291-324), Springer, NewYork.
  12. Sedhain S, Menon AK, Sanner S, and Xie L (2015). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web, 111-112.
  13. Vincent P, Larochelle H, Bengio Y, and Manzagol PA (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, 1096-1103.
  14. Wu Y, DuBois C, Zheng AX, and Ester M (2016). Collaborative denoising auto-encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, 153-162.
  15. Zhang S, Yao L, Sun A, and Tay Y (2019). Deep learning based recommender system: A survey and new perspectives, ACM Computing Surveys (CSUR), 52, 1-38. https://doi.org/10.1145/3158369
  16. Zhang S, Yao L, and Xu X (2017). Autosvd++ an efficient hybrid collaborative filtering model via contractive auto-encoders. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 957-960.
  17. Zheng N and Xue J (2009). Manifold Learning(pp.87-119), Springer, London.