Acknowledgement
이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.2019R1F1A1040515, No.2019R1A4A1028134).
References
- Aggarwal CC (2018). Neural Networks and Deep Learning, Springer, NewYork.
- Ali SM, Nayak GK, Lenka RK, and Barik RK (2018). Movie recommendation system using genome tags and content-based filtering, Advances in Data and Information Sciences(pp.85-94), Springer, NewYork.
- Harper FM and Konstan JA (2015). The movielens datasets: History and context, ACM Transactions on Interactive Intelligent Systems, 5, 1-19. https://doi.org/10.1145/2827872
- Kingma DP and Welling M (2013). Auto-Encoding Variational Bayes, arXiv preprint arXIV:1312.6114.
- Koren Y (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 426-434.
- Koren Y, Bell R, and Volinsky C (2009). Matrix factorization techniques for recommender systems, Computer, 42, 30-37. https://doi.org/10.1109/MC.2009.263
- Kuchaiev O and Ginsburg B (2017). Training Deep Autoencoders for Collaborative Filtering, arXiv preprint arXiv:1708.01715.
- Ni J, Li J, and McAuley J (2019). Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 188-197.
- Odaibo S (2019). Tutorial: Deriving the Standard Variational Autoencoder (vae) Loss Function, arXiv preprint arXiv:1907.08956.
- Rifai S, Vincent P, Muller X, Glorot X, and Bengio Y (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International Conference on Machine Learning June 2011, 833-840
- Schafer JB, Frankowski D, Herlocker J, and Sen S (2007). Collaborative filtering recommender systems, The Adaptive Web(pp. 291-324), Springer, NewYork.
- Sedhain S, Menon AK, Sanner S, and Xie L (2015). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web, 111-112.
- Vincent P, Larochelle H, Bengio Y, and Manzagol PA (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, 1096-1103.
- Wu Y, DuBois C, Zheng AX, and Ester M (2016). Collaborative denoising auto-encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, 153-162.
- Zhang S, Yao L, Sun A, and Tay Y (2019). Deep learning based recommender system: A survey and new perspectives, ACM Computing Surveys (CSUR), 52, 1-38. https://doi.org/10.1145/3158369
- Zhang S, Yao L, and Xu X (2017). Autosvd++ an efficient hybrid collaborative filtering model via contractive auto-encoders. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 957-960.
- Zheng N and Xue J (2009). Manifold Learning(pp.87-119), Springer, London.