참고문헌
- W. Wang, Z. Liu & T. Chiang (2019). A New Effective-Conducting-Path-Driven Subthreshold Behavior Model for Junctionless Dual-Material Omega-Gate Nano-MOSFETs. IEEE Transactions on Nanotechnology, 18, 904-910. DOI : 10.1109/TNANO.2019.2937824
- H. Mertens et al. (2016). Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. IEEE Symposium on VLSI Technology, 1-2. DOI : 10.1109/VLSIT.2016.7573416
- S. Monfray et al. (2002). 50nm - Gate All Around (GAA) - Silicon On Nothing (SON) - Devices: A Simple Way to Co-integration of GAA Transistors within bulk MOSFET process. Symp. VLSI Tech. Dig., 108-109. DOI : 10.1109/VLSIT.2002.1015411
- J. M. Hergenrother et al. (1999). The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length. IEDM Tech. Dig., 75-78. DOI : 10.1109/IEDM.1999.823850
- P. Cadareanu, J. Romero-Gonzalez, and P. -E. Gaillardon (2021). Parasitic Capacitance Analysis of Three-Independent-Gate Field-Effect Transistors. IEEE Journal of the Electron Devices Society, 9, 400-408. DOI : 10.1109/JEDS.2021.3070475
- S. Nanda & R. S. Dhar (2021). Implementation and Characterization of 14 nm Trigate HOI n-FinFET using Strained Silicon channel with reduced area on chip. 6th International Conference for Convergence in Technology, 1-4. DOI : 10.1109/I2CT51068.2021.9417877
- K. Asano, Y. K. Choi, T. J. King & C. Hu (2001). Patterning Sub-30-nm MOSFET Gate with I-Line Lithography. IEEE Trans. Electron Devices, 48(5), 1004-1006. DOI : 10.1109/16.918251
- Y. K. Choi et al. (2001). Sub-20nm CMOS FinFET Technologies,IEDM Tech. Dig., 2-5. DOI : 10.1109/IEDM.2001.979526
- J. Kedzierski, P. Xuan, E. Anderson, J. Bokor, T. J. King & C. Hu (2001). Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,. IEDM Tech. Dig., 57-61. DOI : 10.1109/IEDM.2000.904258
- J. Kedzierski et al. (2003). Extension and source/drain design for high-performance FinFET devices, IEEE Trans. Electron Devices, 50(4), 952-958. DOI : 10.1109/TED.2003.811412
- N. Lindert et al. (2001). Quasi-planar FinFETs with selectively grown germanium raised source/drain, Proc. IEEE Int. SOI Conf., 111-112. DOI : 10.1109/SOIC.2001.958011
- C. H. Park, M. H. Oh, H. S. Kang & H. K. Kang (2004). A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications. ETRI Journal, 26(6), 575-582. DOI : 10.4218/etrij.04.0104.0074
- Y. K. Cho, T. M. Roh, J. K. Kwon & J. Kim (2007). Selective oxidation fin channel MOSFETs with low source/drain series resistance. Electronics Letters, 43(13), 734-735. DOI : 10.1109/NMDC.2006.4388796
- Y. K. Choi et al. (2002). FinFET Process Renements for Improved Mobility and Gate Workfunction Engineering, IEDM Tech. Dig., 259-262. DOI : 10.1109/IEDM.2002.1175827
- X. Huang et al. (1999). Sub 50-nm FinFET: PMOS, IEDM Tech. Dig., 67-70. DOI : 10.1109/IEDM.1999.823848
- A. M. Waite et al. (2005). Raised source/ drains for 50 nm MOSFETs using a silane/dichlorosilane mixture for selective epitaxy, Solid-State Electron, 49, 529-534. DOI : 10.1016/j.sse.2005.01.019
- H. J. Huang et al. (2000). Reduction of Source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain. IEEE Electron Device Lett., 21(9), 448-450. DOI : 10.1109/55.863107
- Y. Taur & T. H. Ning (1998). Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press.