DOI QR코드

DOI QR Code

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique

선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법

  • Cho, Young-Kyun (Division of Electrical, Electronic and Control Engineering, Kongju National University)
  • 조영균 (공주대학교 전기전자제어공학부)
  • Received : 2021.05.24
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

본 핀 채널 전계 효과 트랜지스터에서 낮은 소스/드레인 직렬 저항을 위한 새로운 선택적 산화 방식을 제안하였다. 이 방법을 이용하면, gate-all-around 구조와 점진적으로 증가되는 형태의 소스/드레인 확장영역을 갖는 핀 채널 MOSFET를 얻을 수 있다. 제안된 트랜지스터는 비교 소자에 비해 70% 이상의 소스/드레인 직렬 저항의 감소를 얻을 수 있다. 또한, 제안된 소자는 단채널 효과를 억제하면서도 높은 구동 전류와 전달컨덕턴스 특징을 보인다. 제작된 소자의 포화전류, 최대 선형 전달컨덕턴스, 최대 포화 전달컨덕턴스, subthreshold swing, 및 DIBL은 각각 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, 62 mV/V의 값을 갖는다.

Keywords

References

  1. W. Wang, Z. Liu & T. Chiang (2019). A New Effective-Conducting-Path-Driven Subthreshold Behavior Model for Junctionless Dual-Material Omega-Gate Nano-MOSFETs. IEEE Transactions on Nanotechnology, 18, 904-910. DOI : 10.1109/TNANO.2019.2937824
  2. H. Mertens et al. (2016). Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. IEEE Symposium on VLSI Technology, 1-2. DOI : 10.1109/VLSIT.2016.7573416
  3. S. Monfray et al. (2002). 50nm - Gate All Around (GAA) - Silicon On Nothing (SON) - Devices: A Simple Way to Co-integration of GAA Transistors within bulk MOSFET process. Symp. VLSI Tech. Dig., 108-109. DOI : 10.1109/VLSIT.2002.1015411
  4. J. M. Hergenrother et al. (1999). The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length. IEDM Tech. Dig., 75-78. DOI : 10.1109/IEDM.1999.823850
  5. P. Cadareanu, J. Romero-Gonzalez, and P. -E. Gaillardon (2021). Parasitic Capacitance Analysis of Three-Independent-Gate Field-Effect Transistors. IEEE Journal of the Electron Devices Society, 9, 400-408. DOI : 10.1109/JEDS.2021.3070475
  6. S. Nanda & R. S. Dhar (2021). Implementation and Characterization of 14 nm Trigate HOI n-FinFET using Strained Silicon channel with reduced area on chip. 6th International Conference for Convergence in Technology, 1-4. DOI : 10.1109/I2CT51068.2021.9417877
  7. K. Asano, Y. K. Choi, T. J. King & C. Hu (2001). Patterning Sub-30-nm MOSFET Gate with I-Line Lithography. IEEE Trans. Electron Devices, 48(5), 1004-1006. DOI : 10.1109/16.918251
  8. Y. K. Choi et al. (2001). Sub-20nm CMOS FinFET Technologies,IEDM Tech. Dig., 2-5. DOI : 10.1109/IEDM.2001.979526
  9. J. Kedzierski, P. Xuan, E. Anderson, J. Bokor, T. J. King & C. Hu (2001). Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,. IEDM Tech. Dig., 57-61. DOI : 10.1109/IEDM.2000.904258
  10. J. Kedzierski et al. (2003). Extension and source/drain design for high-performance FinFET devices, IEEE Trans. Electron Devices, 50(4), 952-958. DOI : 10.1109/TED.2003.811412
  11. N. Lindert et al. (2001). Quasi-planar FinFETs with selectively grown germanium raised source/drain, Proc. IEEE Int. SOI Conf., 111-112. DOI : 10.1109/SOIC.2001.958011
  12. C. H. Park, M. H. Oh, H. S. Kang & H. K. Kang (2004). A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications. ETRI Journal, 26(6), 575-582. DOI : 10.4218/etrij.04.0104.0074
  13. Y. K. Cho, T. M. Roh, J. K. Kwon & J. Kim (2007). Selective oxidation fin channel MOSFETs with low source/drain series resistance. Electronics Letters, 43(13), 734-735. DOI : 10.1109/NMDC.2006.4388796
  14. Y. K. Choi et al. (2002). FinFET Process Renements for Improved Mobility and Gate Workfunction Engineering, IEDM Tech. Dig., 259-262. DOI : 10.1109/IEDM.2002.1175827
  15. X. Huang et al. (1999). Sub 50-nm FinFET: PMOS, IEDM Tech. Dig., 67-70. DOI : 10.1109/IEDM.1999.823848
  16. A. M. Waite et al. (2005). Raised source/ drains for 50 nm MOSFETs using a silane/dichlorosilane mixture for selective epitaxy, Solid-State Electron, 49, 529-534. DOI : 10.1016/j.sse.2005.01.019
  17. H. J. Huang et al. (2000). Reduction of Source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain. IEEE Electron Device Lett., 21(9), 448-450. DOI : 10.1109/55.863107
  18. Y. Taur & T. H. Ning (1998). Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press.