DOI QR코드

DOI QR Code

Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Trichoderma harzianum through Reducing the Hyphal Density

  • Kim, Tae Gwan (Department of Microbiology, Pusan National University) ;
  • Knudsen, Guy R. (Soil and Land Resources Division, Department of Plant, Soil, and Entomological Sciences, University of Idaho)
  • 투고 : 2021.02.03
  • 심사 : 2021.03.29
  • 발행 : 2021.06.28

초록

Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.

키워드

과제정보

This study was supported by the USDA CSREES Biotechnology Risk Assessment Grants Program, Agreement Number 2007-33522-18565 and the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048872).

참고문헌

  1. Adams PB, Ayers WA. 1979. Ecology of Sclerotinia species. Phytopathology 69: 896-899. https://doi.org/10.1094/Phyto-69-896
  2. Purdy LH. 1979. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875-880. https://doi.org/10.1094/Phyto-69-875
  3. Cook GE, Steadman JR, Boosalis MG. 1975. Survival of Whetzelinia sclerotiorum and initial infection of dry edible beans in western Nebraska. Phytopathology 65: 250-255. https://doi.org/10.1094/Phyto-65-250
  4. Anas O, Reeleder RD. 1987. Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in Quebec muck soils. Phytopathology 77: 327-331. https://doi.org/10.1094/Phyto-77-327
  5. Knudsen GR, Eschen DJ, Dandurand LM, Bin L. 1991. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis. 75: 446-470.
  6. Dandurand LM, Mosher RD, Knudsen GR. 2000. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can. J. Microbiol. 46: 1051-1057. https://doi.org/10.1139/w00-087
  7. Zeng W, Wang D, Kirk W, Hao J. 2012. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol. Control 60: 225-232. https://doi.org/10.1016/j.biocontrol.2011.10.009
  8. Freckman DW, Caswell EP. 1985. The ecology of nematodes in agroecosystem. Annu. Rev. Phytopathol. 23: 275-296. https://doi.org/10.1146/annurev.py.23.090185.001423
  9. Neher DA. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 48: 371-394. https://doi.org/10.1146/annurev-phyto-073009-114439
  10. Hasna MK, Insunza V, Lagerlof J, Ramert B. 2007. Food attraction and population growth of fungivorous nematodes with different fungi. Ann. Appl. Biol. 151: 175-182. https://doi.org/10.1111/j.1744-7348.2007.00163.x
  11. Haraguchi S, Yoshiga T. 2020. Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biol. Control 143: 104203. https://doi.org/10.1016/j.biocontrol.2020.104203
  12. Chen J, Ferris H. 1999. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol. Biochem. 31: 1265-1279. https://doi.org/10.1016/S0038-0717(99)00042-5
  13. Ingham RE, Trofymow JA, Ingham ER, Coleman DC. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 55: 119-140. https://doi.org/10.2307/1942528
  14. Bae Y-S, Knudsen GR. 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 91: 301-306. https://doi.org/10.1094/PHYTO.2001.91.3.301
  15. Kim TG, Knudsen GR. 2018. Differential selection by nematodes of an introduced biocontrol fungus vs. indigenous fungi in nonsterile soil. J. Microbiol. Biotechnol. 28: 831-838. https://doi.org/10.4014/jmb.1712.12042
  16. Danielson RM, Davey CB. 1973. Non nutritional factors affecting the growth of Trichoderma in culture. Soil Biol. Biochem. 5: 495-504. https://doi.org/10.1016/0038-0717(73)90039-4
  17. Bakonyi G, Nagy P, Kovacs-Lang E, Kovacs E, Barabas S, Repasi V, et al. 2007. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil Ecol. 37: 31-40. https://doi.org/10.1016/j.apsoil.2007.03.008
  18. Freckman DW. 1986. The ecology of dehydration in soil organisms, pp. 157-168. In Leopold AC (ed.), Membranes, metabolism, and dry organisms, Ed. Cornell University Press, Ithaca, USA.
  19. Steinberger Y, Sarig S. 1993. Response by soil nematode populations and the soil microbial biomass to a rain episode in the hot, dry Negev desert. Biol. Fert. Soils 16: 188-192. https://doi.org/10.1007/BF00361406
  20. Ekschmitt K, Griffiths BS. 1998. Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment. Appl. Soil Ecol. 10: 201-215. https://doi.org/10.1016/S0929-1393(98)00119-X
  21. Demeure Y, Freckman DW, Van Gundy SD. 1979. Anhydrobiotic coiling of nematodes in soil. J. Nematol. 11: 189-195.
  22. Jin X, Harman GE, Taylor AG. 1991. Conidial biomass and dessication tolerance of Trichoderma harzianum produced at different medium water potential. Biol. Control 1: 237-243. https://doi.org/10.1016/1049-9644(91)90072-8
  23. Eastburn DM, Butler EE. 1991. Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia 83: 257-263. https://doi.org/10.1080/00275514.1991.12026009
  24. Magan N. 1988. Effects of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheat. Trans. Br. Mycol. Soc. 90: 97-107. https://doi.org/10.1016/S0007-1536(88)80185-2
  25. Magan N, Lynch JM. 1986. Water potential, growth and cellulolysis of fungi involved in decompostition of cereal residues. J. Gen. Microbiol. 132: 1181-1187.
  26. Kredics L, Antal Z, Manczinger L. 2000. Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Curr. Microbiol. 40: 310-314. https://doi.org/10.1007/s002849910062
  27. Lupo S, Dupont J, Bettucci L. 2002. Ecophysiology and saprophytic ability of Trichoderma spp. Cryptogamie Mycol. 23: 71-80.
  28. Knudsen GR, Bin L. 1990. Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80: 724-727. https://doi.org/10.1094/Phyto-80-724
  29. Bae YS, Knudsen GR. 2007. Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Appl. Soil Ecol. 35: 21. https://doi.org/10.1016/j.apsoil.2006.05.014
  30. Bae Y-S, Knudsen GR. 2000. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soil. Appl. Environ. Microbiol. 66: 810-815. https://doi.org/10.1128/AEM.66.2.810-815.2000
  31. Orr KA, Knudsen GR. 2004. Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 94: 1383-1389. https://doi.org/10.1094/PHYTO.2004.94.12.1383
  32. Kim TG, Knudsen GR. 2013. Relationship between the biocontrol fungus Trichoderma harzianum and the phytopathogenic fungus Fusarium solani f.sp. pisi. Appl. Soil Ecol. 68: 57-60. https://doi.org/10.1016/j.apsoil.2013.03.009
  33. Papavizas GC. 1981. Survival of Trichoderma harzianum in soil and in pea and bean rhizospheres. Phytopathology 71: 121-125.
  34. Huang HC. 1983. Histology, amino acid leakage, and chemical composition of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Can. J. Botany 61: 1443-1447. https://doi.org/10.1139/b83-156
  35. Huang HC. 1985. Factors affecting myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Phytopathology 75: 433-437. https://doi.org/10.1094/Phyto-75-433
  36. Lockwood JL, Filonow AB. 1981. Responses of fungi to nutrient-limiting conditions and to inhibitory substances in natural habitats, pp. 1-61. In Alexander M (ed.), Advances in Microbial Ecology, 1st Ed. Plenum Press, New York and London
  37. Kim TG, Knudsen GR. 2011. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus. Fungal Biol. 115: 317-325. https://doi.org/10.1016/j.funbio.2010.12.008
  38. Sarrocco S, Mikkelsen L, Vergara M, Jensen DF, Lubeck M, Vannacci G. 2006. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Mycol. Res. 110: 179-187. https://doi.org/10.1016/j.mycres.2005.08.005
  39. Bae YS, Knudsen GR. 2005. Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol. Control 32: 236-242. https://doi.org/10.1016/j.biocontrol.2004.10.001
  40. Clarholm M, Popovic B, Rosswall T, Soderstrom B, Sohlenius B, Staaf H, et al. 1981. Biological aspects of nitrogen mineralization in humus from a pine forest podsol incubated under different moisture and temperature conditions. Oikos 37: 137-145. https://doi.org/10.2307/3544457
  41. Sohlenius B. 1985. Influence of climatic conditions on nematode coexistence: a laboratory experiment with a coniferous forest soil. Oikos 44: 430-438. https://doi.org/10.2307/3565784