References
- Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, et al. 2018. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378: 1085-1095. https://doi.org/10.1056/NEJMoa1708423
- Choi YY, Cheong JH. 2017. Beyond precision surgery: molecularly motivated precision care for gastric cancer. Eur. J. Surg. Oncol. 43: 856-864. https://doi.org/10.1016/j.ejso.2017.02.013
- Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, et al. 2018. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 9: 454. https://doi.org/10.1038/s41419-018-0485-1
- Figueiredo C, Costa S, Karameris A, Machado JC. 2015. Pathogenesis of gastric cancer. Helicobacter 20(Suppl) 1: 30-35. https://doi.org/10.1111/hel.12254
- Huang W, Lu Y, Wang F, Huang X, Yu Z. 2018. Downregulation of circular RNA hsa_circ_0000144 inhibits bladder cancer progression via stimulating miR-217 and suppressing RUNX2 expression. Gene 678: 337-342. https://doi.org/10.1016/j.gene.2018.08.036
- Huang YS, Jie N, Zou KJ, Weng Y. 2017. Expression profile of circular RNAs in human gastric cancer tissues. Mol. Med. Rep. 16: 2469-2476. https://doi.org/10.3892/mmr.2017.6916
- Jin J, Chen A, Qiu W, Chen Y, Li Q, Zhou X, et al. 2019. Dysregulated circRNA_100876 suppresses proliferation of osteosarcoma cancer cells by targeting microRNA-136. J. Cell Biochem. 120: 15678-15687. https://doi.org/10.1002/jcb.28837
- Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. 2014. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 23: 700-713. https://doi.org/10.1158/1055-9965.EPI-13-1057
- Kim HS, Kim JH, Kim JW, Kim BC. 2016. Chemotherapy in elderly patients with gastric cancer. J. Cancer 7: 88-94. https://doi.org/10.7150/jca.13248
- Kristensen LS, Hansen TB, Veno MT, Kjems J. 2018. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37: 555-565. https://doi.org/10.1038/onc.2017.361
- Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, et al. 2015. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am. J. Cancer Res. 5: 472-480.
- Li R, Wu B, Xia J, Ye L, Yang X. 2019. Circular RNA hsa_circRNA_102958 promotes tumorigenesis of colorectal cancer via miR-585/CDC25B axis. Cancer Manag. Res. 11: 6887-6893. https://doi.org/10.2147/CMAR.S212180
- Li Y, Gonzalez Bosquet J, Yang S, Thiel KW, Zhang Y, Liu H, et al. 2017. Role of metadherin in estrogen-regulated gene expression. Int. J. Mol. Med. 40: 303-310. https://doi.org/10.3892/ijmm.2017.3020
- Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. 2015. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25: 981-984. https://doi.org/10.1038/cr.2015.82
- Liotta LA, Stetler-Stevenson WG. 1991. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 51(18 Suppl): 5054s-5059s.
- Liu M, Sun W, Liu Y, Dong X. 2016. The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncol. Rep. 36: 1679-1685. https://doi.org/10.3892/or.2016.4909
- Liu S, Yan G, Zhang J, Yu L. 2018. Knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) inhibits proliferation, migration, and invasion and promotes apoptosis by targeting miR-124 in retinoblastoma. Oncol. Res. 26: 581-591. https://doi.org/10.3727/096504017X14953948675403
- Mei D, Zhao B, Zhang J, Luo R, Lu H, Xu H, et al. 2020. Impact of lymphovascular invasion on survival outcome in patients with gastric cancer. Am. J. Clin. Pathol. 153: 833-841. https://doi.org/10.1093/ajcp/aqaa021
- Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333-338. https://doi.org/10.1038/nature11928
- Min L, Wang H, Zeng Y. 2019. CircRNA_104916 regulates migration, apoptosis and epithelial-mesenchymal transition in colon cancer cells. Front. Biosci. (Landmark Ed) 24: 819-832. https://doi.org/10.2741/4753
- Ouyang Y, Li Y, Huang Y, Li X, Zhu Y, Long Y, et al. 2019. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J. Cell Physiol. 234: 10458-10469. https://doi.org/10.1002/jcp.27714
- Peng L, Yuan XQ, Li GC. 2015. The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol. Rep. 33: 2669-2674. https://doi.org/10.3892/or.2015.3904
- Ponzetto A, Figura N. 2019. Screening for gastric cancer. Am. J. Gastroenterol. 114: 690. https://doi.org/10.14309/ajg.0000000000000110
- Qu Y, Dou P, Hu M, Xu J, Xia W, Sun H. 2019. circRNA-CER mediates malignant progression of breast cancer through targeting the miR-136/MMP13 axis. Mol. Med. Rep. 19: 3314-3320.
- Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733. https://doi.org/10.1371/journal.pone.0030733
- Shen F, Liu P, Xu Z, Li N, Yi Z, Tie X, et al. 2019. CircRNA_001569 promotes cell proliferation through absorbing miR-145 in gastric cancer. J. Biochem. 165: 27-36. https://doi.org/10.1093/jb/mvy079
- Siegel RL, Miller KD, Jemal A. 2017. Cancer statistics. CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
- Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. 2017. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep. 7: 40342. https://doi.org/10.1038/srep40342
- Wang JT, Peng JG, Zhang JQ, Wang ZX, Zhang Y, Zhou XR, et al. 2019. Novel berberine-based derivatives with potent hypoglycemic activity. Bioorg. Med. Chem. Lett. 29: 126709. https://doi.org/10.1016/j.bmcl.2019.126709
- Wei J, Wang J, Gao X, Qi F. 2019. Identification of differentially expressed circRNAs and a novel hsa_circ_0000144 that promote tumor growth in gastric cancer. Cancer Cell Int. 19: 268. https://doi.org/10.1186/s12935-019-0975-y
- Wei R, Deng Z, Su J. 2015. miR-217 targeting Wnt5a in osteosarcoma functions as a potential tumor suppressor. Biomed. Pharmacother. 72: 158-164. https://doi.org/10.1016/j.biopha.2015.04.012
- Wu Y, Zhang Y, Zhang Y, Wang JJ. 2017. CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a. Cell Biol. Int. 41: 1283-1289. https://doi.org/10.1002/cbin.10761
- Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. 2016. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7: 26680-26691. https://doi.org/10.18632/oncotarget.8589
- Zequn N, Xuemei Z, Wei L, Zongjuan M, Yujie Z, Yanli H, et al. 2016. The role and potential mechanisms of LncRNA-TATDN1 on metastasis and invasion of non-small cell lung cancer. Oncotarget 7: 18219-18228. https://doi.org/10.18632/oncotarget.7788
- Zhang N, Lu C, Chen L. 2016. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol. Lett. 12: 4589-4597. https://doi.org/10.3892/ol.2016.5249
- Zhang Y, Liu H, Li W, Yu J, Li J, Shen Z, et al. 2017. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 9: 1585-1594. https://doi.org/10.18632/aging.101254
- Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, et al. 2019. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am. J. Transl. Res. 11: 4126-4138.
- Zhou Z, Jiang R, Yang X, Guo H, Fang S, Zhang Y, et al. 2018. circRNA Mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination. Theranostics 8: 575-592. https://doi.org/10.7150/thno.21648
- Zhu Q, Lu G, Luo Z, Gui F, Wu J, Zhang D, et al. 2018. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem. Biophys. Res. Commun. 497: 626-632. https://doi.org/10.1016/j.bbrc.2018.02.119