DOI QR코드

DOI QR Code

Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217

  • Ji, Fengcun (Department of General Surgery, Sunshine Union Hospital) ;
  • Lang, Chao (Department of General Surgery, Sunshine Union Hospital) ;
  • Gao, Pengfei (Department of General Surgery, Sunshine Union Hospital) ;
  • Sun, Huanle (Department of General Surgery, Sunshine Union Hospital)
  • Received : 2021.02.04
  • Accepted : 2021.05.03
  • Published : 2021.06.28

Abstract

Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.

Keywords

References

  1. Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, et al. 2018. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378: 1085-1095. https://doi.org/10.1056/NEJMoa1708423
  2. Choi YY, Cheong JH. 2017. Beyond precision surgery: molecularly motivated precision care for gastric cancer. Eur. J. Surg. Oncol. 43: 856-864. https://doi.org/10.1016/j.ejso.2017.02.013
  3. Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, et al. 2018. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 9: 454. https://doi.org/10.1038/s41419-018-0485-1
  4. Figueiredo C, Costa S, Karameris A, Machado JC. 2015. Pathogenesis of gastric cancer. Helicobacter 20(Suppl) 1: 30-35. https://doi.org/10.1111/hel.12254
  5. Huang W, Lu Y, Wang F, Huang X, Yu Z. 2018. Downregulation of circular RNA hsa_circ_0000144 inhibits bladder cancer progression via stimulating miR-217 and suppressing RUNX2 expression. Gene 678: 337-342. https://doi.org/10.1016/j.gene.2018.08.036
  6. Huang YS, Jie N, Zou KJ, Weng Y. 2017. Expression profile of circular RNAs in human gastric cancer tissues. Mol. Med. Rep. 16: 2469-2476. https://doi.org/10.3892/mmr.2017.6916
  7. Jin J, Chen A, Qiu W, Chen Y, Li Q, Zhou X, et al. 2019. Dysregulated circRNA_100876 suppresses proliferation of osteosarcoma cancer cells by targeting microRNA-136. J. Cell Biochem. 120: 15678-15687. https://doi.org/10.1002/jcb.28837
  8. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. 2014. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 23: 700-713. https://doi.org/10.1158/1055-9965.EPI-13-1057
  9. Kim HS, Kim JH, Kim JW, Kim BC. 2016. Chemotherapy in elderly patients with gastric cancer. J. Cancer 7: 88-94. https://doi.org/10.7150/jca.13248
  10. Kristensen LS, Hansen TB, Veno MT, Kjems J. 2018. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37: 555-565. https://doi.org/10.1038/onc.2017.361
  11. Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, et al. 2015. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am. J. Cancer Res. 5: 472-480.
  12. Li R, Wu B, Xia J, Ye L, Yang X. 2019. Circular RNA hsa_circRNA_102958 promotes tumorigenesis of colorectal cancer via miR-585/CDC25B axis. Cancer Manag. Res. 11: 6887-6893. https://doi.org/10.2147/CMAR.S212180
  13. Li Y, Gonzalez Bosquet J, Yang S, Thiel KW, Zhang Y, Liu H, et al. 2017. Role of metadherin in estrogen-regulated gene expression. Int. J. Mol. Med. 40: 303-310. https://doi.org/10.3892/ijmm.2017.3020
  14. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. 2015. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25: 981-984. https://doi.org/10.1038/cr.2015.82
  15. Liotta LA, Stetler-Stevenson WG. 1991. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 51(18 Suppl): 5054s-5059s.
  16. Liu M, Sun W, Liu Y, Dong X. 2016. The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncol. Rep. 36: 1679-1685. https://doi.org/10.3892/or.2016.4909
  17. Liu S, Yan G, Zhang J, Yu L. 2018. Knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) inhibits proliferation, migration, and invasion and promotes apoptosis by targeting miR-124 in retinoblastoma. Oncol. Res. 26: 581-591. https://doi.org/10.3727/096504017X14953948675403
  18. Mei D, Zhao B, Zhang J, Luo R, Lu H, Xu H, et al. 2020. Impact of lymphovascular invasion on survival outcome in patients with gastric cancer. Am. J. Clin. Pathol. 153: 833-841. https://doi.org/10.1093/ajcp/aqaa021
  19. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333-338. https://doi.org/10.1038/nature11928
  20. Min L, Wang H, Zeng Y. 2019. CircRNA_104916 regulates migration, apoptosis and epithelial-mesenchymal transition in colon cancer cells. Front. Biosci. (Landmark Ed) 24: 819-832. https://doi.org/10.2741/4753
  21. Ouyang Y, Li Y, Huang Y, Li X, Zhu Y, Long Y, et al. 2019. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J. Cell Physiol. 234: 10458-10469. https://doi.org/10.1002/jcp.27714
  22. Peng L, Yuan XQ, Li GC. 2015. The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol. Rep. 33: 2669-2674. https://doi.org/10.3892/or.2015.3904
  23. Ponzetto A, Figura N. 2019. Screening for gastric cancer. Am. J. Gastroenterol. 114: 690. https://doi.org/10.14309/ajg.0000000000000110
  24. Qu Y, Dou P, Hu M, Xu J, Xia W, Sun H. 2019. circRNA-CER mediates malignant progression of breast cancer through targeting the miR-136/MMP13 axis. Mol. Med. Rep. 19: 3314-3320.
  25. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733. https://doi.org/10.1371/journal.pone.0030733
  26. Shen F, Liu P, Xu Z, Li N, Yi Z, Tie X, et al. 2019. CircRNA_001569 promotes cell proliferation through absorbing miR-145 in gastric cancer. J. Biochem. 165: 27-36. https://doi.org/10.1093/jb/mvy079
  27. Siegel RL, Miller KD, Jemal A. 2017. Cancer statistics. CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
  28. Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. 2017. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep. 7: 40342. https://doi.org/10.1038/srep40342
  29. Wang JT, Peng JG, Zhang JQ, Wang ZX, Zhang Y, Zhou XR, et al. 2019. Novel berberine-based derivatives with potent hypoglycemic activity. Bioorg. Med. Chem. Lett. 29: 126709. https://doi.org/10.1016/j.bmcl.2019.126709
  30. Wei J, Wang J, Gao X, Qi F. 2019. Identification of differentially expressed circRNAs and a novel hsa_circ_0000144 that promote tumor growth in gastric cancer. Cancer Cell Int. 19: 268. https://doi.org/10.1186/s12935-019-0975-y
  31. Wei R, Deng Z, Su J. 2015. miR-217 targeting Wnt5a in osteosarcoma functions as a potential tumor suppressor. Biomed. Pharmacother. 72: 158-164. https://doi.org/10.1016/j.biopha.2015.04.012
  32. Wu Y, Zhang Y, Zhang Y, Wang JJ. 2017. CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a. Cell Biol. Int. 41: 1283-1289. https://doi.org/10.1002/cbin.10761
  33. Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. 2016. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7: 26680-26691. https://doi.org/10.18632/oncotarget.8589
  34. Zequn N, Xuemei Z, Wei L, Zongjuan M, Yujie Z, Yanli H, et al. 2016. The role and potential mechanisms of LncRNA-TATDN1 on metastasis and invasion of non-small cell lung cancer. Oncotarget 7: 18219-18228. https://doi.org/10.18632/oncotarget.7788
  35. Zhang N, Lu C, Chen L. 2016. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol. Lett. 12: 4589-4597. https://doi.org/10.3892/ol.2016.5249
  36. Zhang Y, Liu H, Li W, Yu J, Li J, Shen Z, et al. 2017. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 9: 1585-1594. https://doi.org/10.18632/aging.101254
  37. Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, et al. 2019. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am. J. Transl. Res. 11: 4126-4138.
  38. Zhou Z, Jiang R, Yang X, Guo H, Fang S, Zhang Y, et al. 2018. circRNA Mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination. Theranostics 8: 575-592. https://doi.org/10.7150/thno.21648
  39. Zhu Q, Lu G, Luo Z, Gui F, Wu J, Zhang D, et al. 2018. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem. Biophys. Res. Commun. 497: 626-632. https://doi.org/10.1016/j.bbrc.2018.02.119