DOI QR코드

DOI QR Code

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways

  • Zhong, Xiaohui (Wuxi School of Medicine, Jiangnan University) ;
  • Zhang, Feng (Wuxi School of Medicine, Jiangnan University) ;
  • Yin, Xinyao (Wuxi School of Medicine, Jiangnan University) ;
  • Cao, Hong (Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University) ;
  • Wang, Xuesong (Wuxi School of Medicine, Jiangnan University) ;
  • Liu, Dongsong (Department of Orthopedics, Affiliated Hospital of Jiangnan University) ;
  • Chen, Jing (Department of Orthopedics, Affiliated Hospital of Jiangnan University) ;
  • Chen, Xue (Wuxi School of Medicine, Jiangnan University)
  • Received : 2021.04.12
  • Accepted : 2021.06.13
  • Published : 2021.06.28

Abstract

Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.

Keywords

Acknowledgement

We thank the support of general program of National Natural Science Foundation of China (81870544), project of Wuxi Municipal Bureau on Science and Technology (N20192025) and general research project of Public Health Research Center of Jiangnan University (JUPH201808).

References

  1. Cheng X, Yang Y, Schwebel D, Liu Z, Li L, Cheng P, et al. 2020. Population ageing and mortality during 1990-2017: A global decomposition analysis. 17: e1003138. https://doi.org/10.1371/journal.pmed.1003138
  2. Farr J, Xu M, Weivoda M, Monroe D, Fraser D, Onken J, et al. 2017. Targeting cellular senescence prevents age-related bone loss in mice. 23: 1072-1079. https://doi.org/10.1038/nm.4385
  3. Rachner T, Coleman R, Hadji P, Hofbauer LJTlD, endocrinology. 2018. Bone health during endocrine therapy for cancer. 6: 901-910.
  4. Follis SL, Bea J, Klimentidis Y, Hu C, Crandall CJ, Garcia DO, et al. 2019. Psychosocial stress and bone loss among postmenopausal women: results from the Women's Health Initiative. J. Epidemiol. Community Health. 73: 888-892. https://doi.org/10.1136/jech-2019-212516
  5. Zaiss MM, Jones RM, Schett G, Pacifici R. 2019. The gut-bone axis: how bacterial metabolites bridge the distance. J. Clin. Invest. 129: 3018-3028. https://doi.org/10.1172/JCI128521
  6. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JCC, Barratt MJ, et al. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164: 859-871. https://doi.org/10.1016/j.cell.2016.01.024
  7. Scher JU, Nayak RR, Ubeda C, Turnbaugh PJ, Abramson SB. 2020. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16: 282-292. https://doi.org/10.1038/s41584-020-0395-3
  8. Wang S-L, Shao B-Z, Zhao S-B, Chang X, Wang P, Miao C-Y, et al. 2019. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis. 10: 391. https://doi.org/10.1038/s41419-019-1634-x
  9. Marsland BJ, Gollwitzer ES. 2014. Host-microorganism interactions in lung diseases. Nature reviews. Immunology 14: 827-835.
  10. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, et al. 2019. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 15: 435-455. https://doi.org/10.1038/s41581-019-0152-5
  11. Kiper P, Saito H, Gori F, Unger S, Hesse E, Yamana K, et al. 2016. Cortical-bone fragility--insights from sFRP4 deficiency in Pyle's Disease. 374: 2553-2562. https://doi.org/10.1056/NEJMoa1509342
  12. Yahiro Y, Maeda S, Morikawa M, Koinuma D, Jokoji G, Ijuin T, et al. 2020. BMP-induced Atoh8 attenuates osteoclastogenesis by suppressing Runx2 transcriptional activity and reducing the Rankl/Opg expression ratio in osteoblasts. 8: 32. https://doi.org/10.1038/s41413-020-00106-0
  13. Lowery JW, Rosen V. 2018. The BMP Pathway and Its Inhibitors in the Skeleton. Physiol. Rev. 98: 2431-2452. https://doi.org/10.1152/physrev.00028.2017
  14. Majidinia M, Sadeghpour A, Yousefi B. 2018. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 233: 2937-2948. https://doi.org/10.1002/jcp.26042
  15. Salazar VS, Gamer LW, Rosen V. 2016. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 12: 203-221. https://doi.org/10.1038/nrendo.2016.12
  16. Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, et al. 2020. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. 140: 115551. https://doi.org/10.1016/j.bone.2020.115551
  17. Kobayashi Y, Uehara S, Udagawa N, Takahashi N. 2016. Regulation of bone metabolism by Wnt signals. J. Biochem. 159: 387-392. https://doi.org/10.1093/jb/mvv124
  18. Baron R, Kneissel M. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19: 179-192. https://doi.org/10.1038/nm.3074
  19. Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. 2019. Small molecules from natural products targeting the Wnt/beta-catenin pathway as a therapeutic strategy. Biomed. Pharmacother. 117: 108990. https://doi.org/10.1016/j.biopha.2019.108990
  20. Luther J, Yorgan TA, Rolvien T, Ulsamer L, Koehne T, Liao N, et al. 2018. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci. Transl. Med. 10.
  21. Roser-Page S, Vikulina T, Weiss D, Habib M, Beck G, Pacifici R, et al. 2018. CTLA-4Ig (abatacept) balances bone anabolic effects of T cells and Wnt-10b with antianabolic effects of osteoblastic sclerostin. 1415: 21-33. https://doi.org/10.1111/nyas.13643
  22. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, et al. 2018. The Microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49: 1116-1131 e1117. https://doi.org/10.1016/j.immuni.2018.10.013
  23. McDonald M, Khoo W, Ng P, Xiao Y, Zamerli J, Thatcher P, et al. 2021. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. 184: 1330-1347.e1313. https://doi.org/10.1016/j.cell.2021.02.002
  24. Robling AG, Bonewald LF. 2020. The osteocyte: new insights. Annu. Rev. Physiol. 82: 485-506. https://doi.org/10.1146/annurev-physiol-021119-034332
  25. Lee K, Chung YH, Ahn H, Kim H, Rho J, Jeong D. 2016. Selective regulation of MAPK signaling mediates RANKL-dependent osteoclast differentiation. Int. J. Biol. Sci. 12: 235-245. https://doi.org/10.7150/ijbs.13814
  26. Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. 2019. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Invest. 129: 3214-3223. https://doi.org/10.1172/JCI125915
  27. Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. 2012. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J. Bone Miner. Res. 27: 342-351. https://doi.org/10.1002/jbmr.559
  28. Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, et al. 2017. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat. Immunol. 18: 675-682. https://doi.org/10.1038/ni.3732
  29. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. 2016. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest. 126: 2049-2063. https://doi.org/10.1172/JCI86062
  30. Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, et al. 2017. Mechanical stress regulates bone metabolism through microRNAs. J. Cell Physiol. 232: 1239-1245. https://doi.org/10.1002/jcp.25688
  31. Amirhosseini M, Madsen RV, Escott KJ, Bostrom MP, Ross FP, Fahlgren A. 2018. GSK-3beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. J. Cell Physiol. 233: 2398-2408. https://doi.org/10.1002/jcp.26111
  32. Kovacs B, Vajda E, Nagy EE. 2019. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int. J. Mol. Sci. 20.
  33. Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong CM, Kobielak K. 2013. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc. Natl. Acad. Sci. USA 110: 1351-1356. https://doi.org/10.1073/pnas.1121312110
  34. Martin M, Sansalone V, Cooper DML, Forwood MR, Pivonka P. 2019. Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model. Biomech. Model Mechanobiol. 18: 1475-1496. https://doi.org/10.1007/s10237-019-01158-w
  35. Cani PJG. 2018. Human gut microbiome: hopes, threats and promises. 67: 1716-1725. https://doi.org/10.1136/gutjnl-2018-316723
  36. Zmora N, Suez J, Elinav EJNrG, hepatology. 2019. You are what you eat: diet, health and the gut microbiota. 16: 35-56.
  37. Li D, Gao C, Zhang F, Yang R, Lan C, Ma Y, et al. 2020. Seven facts and five initiatives for gut microbiome research. Protein Cell. 11: 391-400. https://doi.org/10.1007/s13238-020-00697-8
  38. Nagpal R, Yadav H, Marotta F. 2014. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front. Med. (Lausanne) 1: 15. https://doi.org/10.3389/fmed.2014.00015
  39. Frost F, Kacprowski T, Ruhlemann M, Pietzner M, Bang C, Franke A, et al. 2021. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. 70: 522-530.
  40. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359: 1151-1156. https://doi.org/10.1126/science.aao5774
  41. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305. https://doi.org/10.1038/s41564-018-0306-4
  42. Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, et al. 2019. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365.
  43. Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, et al. 2020. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 395: 75-88. https://doi.org/10.1016/S0140-6736(19)32472-9
  44. Teng F, Klinger C, Felix K, Bradley C, Wu E, Tran N, et al. 2016. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. 44: 875-888. https://doi.org/10.1016/j.immuni.2016.03.013
  45. Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al. 2020. PTH induces bone loss via microbial-dependent expansion of intestinal TNF(+) T cells and Th17 cells. Nat. Commun. 11: 468. https://doi.org/10.1038/s41467-019-14148-4
  46. Awany D, Allali I, Chimusa ER. 2020. Dissecting genome-wide studies for microbiome-related metabolic diseases. Hum. Mol. Genet.
  47. Tilg H, Zmora N, Adolph TE, Elinav E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20: 40-54. https://doi.org/10.1038/s41577-019-0198-4
  48. Whisner CM, Castillo LF. 2018. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. 102: 443-479. https://doi.org/10.1007/s00223-017-0339-3
  49. Zaiss M, Jones R, Schett G, Pacifici RJTJoci. 2019. The gut-bone axis: how bacterial metabolites bridge the distance. 129: 3018-3028. https://doi.org/10.1172/JCI128521
  50. Negi S, Das D, Pahari S, Nadeem S, Agrewala JJFii. 2019. Potential role of gut microbiota in induction and regulation of innate immune memory. 10: 2441. https://doi.org/10.3389/fimmu.2019.02441
  51. Amoroso C, Perillo F, Strati F, Fantini M, Caprioli F, Facciotti F. 2020. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 9.
  52. Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141. https://doi.org/10.1016/j.cell.2014.03.011
  53. Bai Y, Li Y, Marion T, Tong Y, Zaiss M, Tang Z, et al. 2021. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. 116: 102564. https://doi.org/10.1016/j.jaut.2020.102564
  54. Zhou T, Heianza Y, Chen Y, Li X, Sun D, DiDonato J, et al. 2019. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and changes in bone density in response to weight loss diets: the POUNDS lost trial. 42: 1365-1371. https://doi.org/10.2337/dc19-0134
  55. Bradley E, Carpio L, van Wijnen A, McGee-Lawrence M, Westendorf JJPr. 2015. Histone deacetylases in bone development and skeletal disorders. 95: 1359-1381. https://doi.org/10.1152/physrev.00004.2015
  56. Whisner C, Martin B, Nakatsu C, Story J, MacDonald-Clarke C, McCabe L, et al. 2016. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. 146: 1298-1306. https://doi.org/10.3945/jn.115.227256
  57. Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, et al. 2020. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J. Clin. Invest. 130: 1767-1781. https://doi.org/10.1172/JCI133473
  58. Hetu-Arbour R, Tlili M, Bandeira Ferreira F, Abidin B, Kwarteng E, Heinonen KJSc. 2021. Cell-intrinsic Wnt4 promotes hematopoietic stem and progenitor cell self-renewal.
  59. Yan H, Baldridge M, King KJB. 2018. Hematopoiesis and the bacterial microbiome. 132: 559-564.
  60. Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. 2020. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. 370.
  61. Staffas A, Burgos da Silva M, Slingerland A, Lazrak A, Bare C, Holman C, et al. 2018. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. 23: 447-457.e444. https://doi.org/10.1016/j.chom.2018.03.002
  62. Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. 2019. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 10: 1360. https://doi.org/10.3389/fphar.2019.01360
  63. Fatkhullina A, Peshkova I, Dzutsev A, Aghayev T, McCulloch J, Thovarai V, et al. 2018. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. 49: 943-957.e949. https://doi.org/10.1016/j.immuni.2018.09.011
  64. Zhou T, Heianza Y, Chen Y, Li X, Sun D, DiDonato JA, et al. 2019. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and changes in bone density in response to weight loss diets: the POUNDS lost trial. Diabetes Care 42: 1365-1371. https://doi.org/10.2337/dc19-0134
  65. Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. 2019. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS lost trial. Gut 68: 263-270. https://doi.org/10.1136/gutjnl-2018-316155
  66. Dirckx N, Moorer MC, Clemens TL, Riddle RC. 2019. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15: 651-665. https://doi.org/10.1038/s41574-019-0246-y
  67. Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Van Houtven C, et al. 2019. Glycemic control and insulin treatment alter fracture risk in older men with type 2 diabetes mellitus. J. Bone Mineral Res. Official J. Am. Soc. Bone Mineral Res. 34: 2045-2051. https://doi.org/10.1002/jbmr.3826
  68. Gao R, Duff W, Chizen D, Zello GA, Chilibeck PD. 2019. The effect of a low glycemic index pulse-based diet on insulin sensitivity, insulin resistance, bone resorption and cardiovascular risk factors during bed rest. Nutrients 11.
  69. Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, et al. 2020. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-kappaB (nuclear factor kappaB) signals. Arterioscler. Thromb. Vasc. Biol. 40: 751-765. https://doi.org/10.1161/ATVBAHA.119.313414
  70. Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, et al. 2019. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metabolism 30.
  71. Li DY, Tang WHW. 2017. Gut Microbiota and Atherosclerosis. Curr. Atheroscler. Rep. 19: 39. https://doi.org/10.1007/s11883-017-0675-9
  72. Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, et al. 2019. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int. 30: 1003-1013. https://doi.org/10.1007/s00198-019-04855-5
  73. Zhao Y, Cai Y, Cui LY, Tang W, Liu B, Zheng JJ, et al. 2019. Suppression of gut bacterial translocation ameliorates vascular calcification through inhibiting toll-like receptor 9-mediated BMP-2 expression. Oxid. Med. Cell Longev. 2019: 3415682. https://doi.org/10.1155/2019/3415682
  74. Berthelot JM, Wendling D. 2020. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 87: 31-36. https://doi.org/10.1016/j.jbspin.2019.01.004
  75. You L, Zhu L, Li PZ, Wang G, Cai H, Song J, et al. 2020. Dysbacteriosis-derived lipopolysaccharide causes embryonic osteopenia through retinoic-acid-regulated DLX5 expression. Int. J. Mol. Sci. 21.
  76. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. 2016. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA 113: E7554-E7563. https://doi.org/10.1073/pnas.1607235113
  77. Hernandez CJ, Guss JD, Luna M, Goldring SR. 2016. Links between the microbiome and bone. J. Bone Miner. Res. 31: 1638-1646. https://doi.org/10.1002/jbmr.2887
  78. Huttenhower C, Knight R, Brown CT, Caporaso JG, Clemente JC, Gevers D, et al. 2014. Advancing the microbiome research community. Cell 159: 227-230. https://doi.org/10.1016/j.cell.2014.09.022
  79. Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, et al. 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt regulatory T cells and exacerbate colitis in mice. Immunity 50.
  80. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. 2017. CD40-signalling abrogates induction of RORγt Treg cells by intestinal CD103 DCs and causes fatal colitis. 8: 14715. https://doi.org/10.1038/ncomms14715
  81. Walsh MC, Takegahara N, Kim H, Choi Y. 2018. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol. 14: 146-156. https://doi.org/10.1038/nrrheum.2017.213
  82. Kong N, Lan Q, Su W, Chen M, Wang J, Yang Z, et al. 2012. Induced T regulatory cells suppress osteoclastogenesis and bone erosion in collagen-induced arthritis better than natural T regulatory cells. 71: 1567-1572. https://doi.org/10.1136/annrheumdis-2011-201052
  83. Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. 2019. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol. 10: 2441. https://doi.org/10.3389/fimmu.2019.02441
  84. Pacifici R. 2016. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann. NY Acad. Sci. 1364: 11-24. https://doi.org/10.1111/nyas.12969
  85. Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55: 257-286. https://doi.org/10.1146/annurev-phyto-080614-120106
  86. Das Neves Borges P, Vincent TL, Marenzana M. 2017. Application of autofluorescence robotic histology for quantitative evaluation of the 3-dimensional morphology of murine articular cartilage. Microsc. Res. Tech. 80: 1351-1360. https://doi.org/10.1002/jemt.22948
  87. Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, et al. 2014. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J. Immunol. 193: 3902-3913. https://doi.org/10.4049/jimmunol.1302998
  88. Kassem A, Henning P, Kindlund B, Lindholm C, Lerner UH. 2015. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss. FASEB J. 29: 4449-4460. https://doi.org/10.1096/fj.15-272559
  89. Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. 2017. TLRs, future potential therapeutic targets for RA. Autoimmun. Rev. 16: 103-113. https://doi.org/10.1016/j.autrev.2016.12.003
  90. Rodrigues MR, Santo MA, Favero GM, Vieira EC, Artoni RF, Nogaroto V, et al. 2015. Metabolic surgery and intestinal gene expression: digestive tract and diabetes evolution considerations. World J. Gastroenterol. 21: 6990-6998. https://doi.org/10.3748/wjg.v21.i22.6990
  91. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. 2016. Effects of diabetes drugs on the skeleton. Bone 82: 93-100. https://doi.org/10.1016/j.bone.2015.04.026
  92. Sipila S, Tormakangas T, Sillanpaa E, Aukee P, Kujala UM, Kovanen V, et al. 2020. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity. J. Cachexia Sarcopenia Muscle.
  93. Ackerman KE, Singhal V, Baskaran C, Slattery M, Campoverde Reyes KJ, Toth A, et al. 2019. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: a randomised clinical trial. Br. J. Sports Med. 53: 229-236. https://doi.org/10.1136/bjsports-2018-099723
  94. Daily JP, Stumbo JR. 2018. Female athlete triad. Prim Care 45: 615-624. https://doi.org/10.1016/j.pop.2018.07.004
  95. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. 2014. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell Physiol. 229: 1822-1830. https://doi.org/10.1002/jcp.24636
  96. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. 2014. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9: e92368. https://doi.org/10.1371/journal.pone.0092368
  97. Acharya KD, Gao X, Bless EP, Chen J, Tetel MJ. 2019. Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Sci. Rep. 9: 20192. https://doi.org/10.1038/s41598-019-56723-1
  98. Luo Y, Chen GL, Hannemann N, Ipseiz N, Kronke G, Bauerle T, et al. 2015. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 22: 886-894. https://doi.org/10.1016/j.cmet.2015.08.020
  99. Liu Y, Jin X, Hong H, Xiang L, Jiang Q, Ma Y, et al. 2020. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease.
  100. Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. 2016. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J. Nutrition 146: 1298-1306. https://doi.org/10.3945/jn.115.227256
  101. Whisner CM, Martin BR, Schoterman MHC, Nakatsu CH, McCabe LD, McCabe GP, et al. 2013. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Brit. J. Nutrition 110: 1292-1303. https://doi.org/10.1017/S000711451300055X
  102. Chaplin A, Parra P, Laraichi S, Serra F, Palou A. 2016. Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Mol. Nutrition Food Res. 60: 468-480. https://doi.org/10.1002/mnfr.201500480
  103. Guo D, Liu W, Zhang X, Zhao M, Zhu B, Hou T, et al. 2019. Duck egg white-derived peptide VSEE (val-ser-glu-glu) regulates bone and lipid metabolisms by Wnt/β-catenin signaling pathway and intestinal microbiota. Mol. Nutrition Food Res. 63: e1900525.
  104. Boda SK, Almoshari Y, Wang H, Wang X, Reinhardt RA, Duan B, et al. 2019. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomaterialia 85: 282-293. https://doi.org/10.1016/j.actbio.2018.12.051
  105. Gan D, Liu M, Xu T, Wang K, Tan H, Lu X. 2018. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. J. Biomed. Mater. Res. Part A. 106: 2613-2624. https://doi.org/10.1002/jbm.a.36453
  106. Omi M, Kaartinen V, Mishina Y. 2019. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J. Biol. Chem. 294: 17818-17836. https://doi.org/10.1074/jbc.RA119.009521
  107. Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-Goto K, Nakayana S, et al. 2010. RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48: 260-269. https://doi.org/10.1016/j.ceca.2010.09.010
  108. Berg M, Monnin D, Cho J, Nelson L, Crits-Christoph A, Shapira M. 2019. TGFbeta/BMP immune signaling affects abundance and function of C. elegans gut commensals. Nat. Commun. 10: 604. https://doi.org/10.1038/s41467-019-08379-8
  109. Li A, Cong Q, Xia X, Leong WF, Yeh J, Miao D, et al. 2017. Pharmacologic calcitriol inhibits osteoclast lineage commitment via the BMP-Smad1 and IκB-NF-κB pathways. J. Bone Mineral Res Official J. Am. Soc. Bone Mineral Res. 32: 1406-1420. https://doi.org/10.1002/jbmr.3146
  110. Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, et al. 2019. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 83: 102058. https://doi.org/10.1016/j.ceca.2019.102058
  111. McHugh J. 2019. Wnt signalling in the gut microbiota-bone axis. Nat. Rev. Rheumatol. 15: 4. https://doi.org/10.1038/s41584-018-0139-9
  112. Gerner RR, Raffatellu M. 2018. A worm's gut feelings: neuronal muscarinic and epithelial canonical wnt pathways promote antimicrobial defense. Immunity 48: 839-841. https://doi.org/10.1016/j.immuni.2018.04.035
  113. Lee W-C, Guntur AR, Long F, Rosen CJ. 2017. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr. Rev. 38: 255-266. https://doi.org/10.1210/er.2017-00064
  114. Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, et al. 2016. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J. Bone Mineral Res. Official J. Am. Soc. Bone Mineral Res. 31: 65-75. https://doi.org/10.1002/jbmr.2599
  115. Willems HME, van den Heuvel E, Schoemaker RJW, Klein-Nulend J, Bakker AD. 2017. Diet and exercise: a match made in bone. Curr. Osteoporos Rep. 15: 555-563. https://doi.org/10.1007/s11914-017-0406-8
  116. Haigh L, Bremner S, Houghton D, Henderson E, Avery L, Hardy T, et al. 2019. Barriers and facilitators to mediterranean diet adoption by patients with nonalcoholic fatty liver disease in Northern Europe. Clin. Gastroenterol. Hepatol. 17: 1364-1371 e1363. https://doi.org/10.1016/j.cgh.2018.10.044
  117. Jennings A, Cashman KD, Gillings R, Cassidy A, Tang J, Fraser W, et al. 2018. A Mediterranean-like dietary pattern with vitamin D3 (10 microg/d) supplements reduced the rate of bone loss in older Europeans with osteoporosis at baseline: results of a 1-y randomized controlled trial. Am. J. Clin. Nutr. 108: 633-640. https://doi.org/10.1093/ajcn/nqy122
  118. Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.) 362: 776-780. https://doi.org/10.1126/science.aau5812
  119. Haro C, Garcia-Carpintero S, Rangel-Zuniga OA, Alcala-Diaz JF, Landa BB, Clemente JC, et al. 2017. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Mol. Nutr. Food Res. 61.
  120. Palomeras-Vilches A, Vinals-Mayolas E, Bou-Mias C, Jorda-Castro M, Aguero-Martinez M, Busquets-Barcelo M, et al. 2019. adherence to the mediterranean diet and bone fracture risk in middle-aged women: a case control study. Nutrients 11.
  121. Veronese N, Koyanagi A, Stubbs B, Cooper C, Guglielmi G, Rizzoli R, et al. 2019. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin. Nutr. 38: 2735-2739. https://doi.org/10.1016/j.clnu.2018.11.032
  122. Noel SE, Mangano KM, Mattei J, Griffith JL, Dawson-Hughes B, Bigornia S, et al. 2020. Dietary approaches to stop hypertension, mediterranean, and alternative healthy eating indices are associated with bone health among Puerto Rican adults from the Boston Puerto Rican osteoporosis study. Am. J. Clin. Nutr. 111: 1267-1277. https://doi.org/10.1093/ajcn/nqaa090
  123. Qi X, Zhang Y, Guo H, Hai Y, Luo Y, Yue T. 2019. Mechanism and intervention measures of iron side effects on the intestine. Crit. Rev. Food Sci. Nutr. 1-13.
  124. Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. 2017. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J. Am. Coll Nutr. 36: 497-506. https://doi.org/10.1080/07315724.2017.1318724
  125. Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, et al. 2020. Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J. Bone Miner. Res. 35: 801-820. https://doi.org/10.1002/jbmr.3947
  126. Schepper JD, Collins FL, Rios-Arce ND, Raehtz S, Schaefer L, Gardinier JD, et al. 2019. Probiotic Lactobacillus reuteri prevents postantibiotic bone loss by reducing intestinal dysbiosis and preventing barrier disruption. J. Bone Miner. Res. 34: 681-698. https://doi.org/10.1002/jbmr.3635
  127. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. 2015. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology 156: 3169-3182. https://doi.org/10.1210/EN.2015-1308
  128. Davis EC, Dinsmoor AM, Wang M, Donovan SM. 2020. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig. Dis. Sci. 65: 706-722. https://doi.org/10.1007/s10620-020-06092-x
  129. Guanabens N, Filella X, Monegal A, Gomez-Vaquero C, Bonet M, Buquet D, et al. 2016. Reference intervals for bone turnover markers in Spanish premenopausal women. Clin. Chem. Lab. Med. 54: 293-303. https://doi.org/10.1515/cclm-2015-0162
  130. Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, et al. 2016. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am. J. Clin. Nutr. 104: 837-843. https://doi.org/10.3945/ajcn.116.132761
  131. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, et al. 2014. Conducting a microbiome study. Cell 158: 250-262. https://doi.org/10.1016/j.cell.2014.06.037