DOI QR코드

DOI QR Code

A control scheme for AMD in the presence of time-delays and SSI effects for tall buildings

  • 투고 : 2019.12.18
  • 심사 : 2021.06.09
  • 발행 : 2021.07.25

초록

The present study addresses the issue of seismic control of active mass damper (AMD) devices in the presence of time-delay for the tall buildings taking into account soil-structure interaction (SSI) effects. Considering the simultaneous effects of the time-delay and SSI, a control scheme of linear quadratic regulator (LQR) controller with a new form of the weighting matrices is proposed. Then, a design procedure based on a particle swarm optimization (PSO) algorithm is proposed to find the optimal weighting matrices of the controller. The numerical studies are conducted on a benchmark tall building. The validity of the proposed LQR controller is demonstrated for the structure subjected to 44 well-known earthquakes. It is concluded that ignoring the SSI and time-delay effects may give an incorrect estimation of the seismic demands of the building. By increasing the soil softness, the structural responses are often increased. Furthermore, it is found that the proposed controller gives a worthy performance in mitigation of maximum top floor displacement for different soil conditions in the presence of time-delays. However, in the presence of long time-delay, a significant increment may achieve for maximum floor acceleration, especially for the soft and medium soils. However, the maximum drifts of the floors remain within the allowed ranges.

키워드

참고문헌

  1. Abdelhafez, H. and Nassar, M. (2016), "Effects of time delay on an active vibration control of a forced and Self-excited nonlinear beam", Nonlin. Dyn., 86(1), 137-151. https://doi.org/10.1007/s11071-016-2877-z.
  2. Aghabalaei Baghaei, K., Ghaffarzadeh, H. and Younespour, A. (2019), "Orthogonal function-based equivalent linearization for sliding mode control of nonlinear systems", Struct. Control Hlth. Monit., 26(8), e2372. https://doi.org/10.1002/stc.2372.
  3. Agrawal, A. and Yang, J. (2000), "Compensation of time-delay for control of civil engineering structures", Earthq. Eng. Struct. Dyn., 29(1), 37-62. https://doi.org/10.1002/(SICI)1096-9845(200001)29:1<37::AID-EQE894>3.0.CO;2-A.
  4. Alavinasab, A., Moharrami, H. and Khajepour, A. (2006), "Active control of structures using energy-based LQR method", Comput. Aid. Civil Infrastr. Eng., 21(8), 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.
  5. Aldemir, U. (2009), "Evaluation of disturbance weighting parameter of minimax attenuation problems", Comput. Aid. Civil Infrastr. Eng., 24(4), 302-308. https://doi.org/10.1111/j.1467-8667.2008.00590.x.
  6. Aldemir, U. (2010), "A simple active control algorithm for earthquake excited structures", Comput. Aid. Civil Infrastr. Eng., 25(3), 218-225. https://doi.org/10.1111/j.1467-8667.2009.00629.x.
  7. An, F., Chen, W.D. and Shao, M.Q. (2015), "Study on discrete acceleration feedback control with time delay", J. Vib. Control, 21(7), 1267-1285. https://doi.org/10.1177/1077546313493816.
  8. Anwar, M.N., Pan, S. and Raza, A. (2019), "PID controller tuning in smith predictor configuration for stable processes with large time delay using IMC scheme", Innovations in Soft Computing and Information Technology, Springer. https://doi.org/10.1007/978-981-13-3185-5_22.
  9. Bekdas, G. and Nigdeli, S.M. (2017), "Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 443-461. https://doi.org/10.1016/j.soildyn.2016.10.019.
  10. Bilondi, M.R.S., Yazdani, H. and Khatibinia, M. (2018), "Seismic energy dissipation-based optimum design of tuned mass dampers", Struct. Multidisc. Optim., 58(6), 2517-2531. https://doi.org/10.1007/s00158-018-2033-0.
  11. Chen, H., Sun, Z. and Sun, L. (2011), "Active mass damper control for cable stayed bridge under construction: an experimental study", Struct. Eng. Mech., 38(2), 141-156. https://doi.org/10.12989/sem.2011.38.2.141.
  12. Chu, S.Y., Soong, T., Lin, C. and Chen, Y. (2002), "Time-delay effect and compensation on direct output feedback controlled mass damper systems", Earthq. Eng. Struct. Dyn., 31(1), 121-137. https://doi.org/10.1002/eqe.101.
  13. Chung, L., Lin, C. and Lu, K. (1995), "Time-delay control of structures", Earthq. Eng. Struct. Dyn., 24(5), 687-701. https://doi.org/10.1002/eqe.4290240506.
  14. Du, H. and Zhang, N. (2008a), "Active vibration control of structures subject to parameter uncertainties and actuator delay", J. Vib. Control, 14(5), 689-709. https://doi.org/10.1177/1077546307083173.
  15. Du, H. and Zhang, N. (2008b), "H control for buildings with time delay in control via linear matrix inequalities and genetic algorithms", Eng. Struct., 30(1), 81-92. https://doi.org/10.1016/j.engstruct.2007.03.005.
  16. Etedali, S. (2017), "A new modified independent modal space control approach toward control of seismic-excited structures", Bull. Earthq. Eng., 15(10), 4215-4243. https://doi.org/10.1007/s10518-017-0134-6.
  17. Etedali, S. and Rakhshani, H. (2018), "Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations", Alex. Eng. J., 57(4), 3205-3218. https://doi.org/10.1016/j.aej.2018.01.009
  18. Etedali, S. and Tavakoli, S. (2017), "PD/PID controller design for seismic control of high-rise buildings using multi-objective optimization: a comparative study with LQR controller", J. Earthq. Tsunami, 11(03), 1750009. https://doi.org/10.1142/S1793431117500099.
  19. Etedali, S., Akbari, M. and Seifi, M. (2019), "MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects", Soil Dyn. Earthq. Eng., 119, 36-50. https://doi.org/10.1016/j.soildyn.2018.12.027.
  20. Etedali, S., Seifi, M. and Akbari, M. (2018a), "A numerical study on optimal FTMD parameters considering soil-structure interaction effects", Geomech. Eng., 16(5), 527-538. https://doi.org/10.12989/gae.2018.16.5.527.
  21. Etedali, S., Zamani, A.A. and Tavakoli, S. (2018b), "A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures", Auto. Constr., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.
  22. Farshidianfar, A. and Soheili, S. (2013), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction", Soil Dyn. Earthq. Eng., 51, 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002.
  23. He, Q. and Wang, L. (2007), "A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization", Appl. Math. Comput., 186(2), 1407-1422. https://doi.org/10.1016/j.amc.2006.07.134.
  24. Heidari, A.H., Etedali, S. and Javaheri-Tafti, M.R. (2018), "A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD", Front. Struct. Civil Eng., 12(1), 44-57. https://doi.org/10.1007/s11709-016-0382-6.
  25. Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart Mater. Struct., 17(1), 015021. https://doi.org/10.1088/0964-1726/17/01/015021.
  26. Jarrahi, H., Asadi, A., Khatibinia, M. and Etedali, S. (2020a), "Optimal design of rotational friction dampers for improving seismic performance of inelastic structures", J. Build. Eng., 27, 100960. https://doi.org/10.1016/j.jobe.2019.100960.
  27. Jarrahi, H., Asadi, A., Khatibinia, M., Etedali, S. and Samadi , A. (2020b), "Simultaneous optimization of placement and parameters of rotational friction dampers for seismic-excited steel moment-resisting frames", Soil Dyn. Earthq. Eng., 136, 106193. https://doi.org/10.1016/j.soildyn.2020.106193.
  28. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization (PSO)", Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia.
  29. Keshtegar, B. and Etedali, S. (2018), "Keshtegar, B., & Etedali, S. (2018), "Nonlinear mathematical modeling and optimum design of tuned mass dampers using adaptive dynamic harmony search algorithm", Struct. Control Hlth. Monit., 25(7), e2163. https://doi.org/10.1002/stc.2163.
  30. Khatibinia, M., Gholami, H. and Labbafi, S. (2016), "Multi-objective optimization of tuned mass dampers considering soil-structure interaction", Iran Univ. Sci. Technol., 6(4), 595-610.
  31. Khoshnoudian, F., Ziaei, R. and Ayyobi, P. (2017), "Effects of nonlinear soil-structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes", Bull. Earthq. Eng., 15(1), 199-226. https://doi.org/10.1007/s10518-016-9963-y.
  32. Leung, A.Y.T. and Zhang, H. (2009), "Particle swarm optimization of tuned mass dampers", Eng. Struct., 31(3), 715-728. https://doi.org/10.1016/j.engstruct.2008.11.017.
  33. Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2008), "Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction", J. Wind Eng. Indus. Aerodyn., 96(6-7), 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034.
  34. Ma, T.W. and Yang, H.T. (2004), "Adaptive feedback-feedforward control of building structures", J. Eng. Mech., 130(7), 786-793. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:7(786).
  35. Nazarimofrad, E. and Zahrai, S.M. (2017), "Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction", Soil Dyn. Earthq. Eng., 115, 838-852. https://doi.org/10.1016/j.soildyn.2017.09.020.
  36. Palazzo, B. and Petti, L. (1999), "Optimal structural control in the frequency domain: control in norm H2 and H∞", J. Struct. Control, 6(2), 205-221. https://doi.org/10.1002/stc.4300060202.
  37. Park, S., Lee, J., Jung, H.J., Jang, D.D. and Kim, S. (2009), "Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use", Wind Struct., 12(4), 313-332. https://doi.org/10.12989/was.2009.12.4.313.
  38. Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9.
  39. Shahi, M., Sohrabi, M.R. and Etedali, S. (2018), "Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects", J. Earthq. Tsunami, 12(03), 1850010. https://doi.org/10.1142/S1793431118500100.
  40. Shariatmadar, H., Golnargesi, S. and Akbarzadeh Totonchi, M. (2014), "Vibration control of buildings using ATMD against earthquake excitations through interval type-2 fuzzy logic controller", Asia. J. Civil Eng. (BHRC), 15(3), 321-338. https://doi.org/10.1007/s42107-018-0059-7.
  41. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Anchorage, AK, USA.
  42. Shourestani, S., Soltani, F., Ghasemi, M. and Etedali, S. (2018), "SSI effects on seismic behavior of smart base-isolated structures", Geomech. Eng., 14(2), 161-174. https://doi.org/10.12989/gae.2018.14.2.161.
  43. Soleymani, M., Abolmasoumi, A.H., Bahrami, H., Khalatbari-S, A., Khoshbin, E. and Sayahi, S. (2018), "Modified sliding mode control of a seismic active mass damper system considering model uncertainties and input time delay", J. Vib. Control, 24(6), 1051-1064. https://doi.org/10.1177/1077546316657477.
  44. Teng, J., Xing, H., Lu, W., Li, Z. and Chen, C. (2016), "Influence analysis of time delay to active mass damper control system using pole assignment method", Mech. Syst. Signal Pr., 80, 99-116. https://doi.org/10.1016/j.ymssp.2016.04.008.
  45. Xu, J. and Sun, Y. (2015), "Experimental studies on active control of a dynamic system via a time-delayed absorber", Acta Mechanica Sinica, 31(2), 229-247. https://doi.org/10.1007/s10409-015-0411-z.
  46. Yan, F., Wang, Y., Xu, W. and Chen, B. (2018), "Time delay control of cable-driven manipulators with artificial bee colony algorithm", Tran. Can. Soc. Mech. Eng., 42(2), 177-186. https://doi.org/10.1139/tcsme-2017-0043.
  47. Zhao, Z.C., Liu, Z.Y. and Zhang, J.G. (2011), "IMC-PID tuning method based on sensitivity specification for process with time-delay", J. Central South Univ. Technol., 18(4), 1153-1160. https://doi.org/10.1007/s11771-011-0817-0.