Acknowledgement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
- Azam, M.S., Ranjan, V. and Kumar, B. (2015), "Finite element modelling and analysis of free vibration of a square plate with side crack", Differ. Eq. Dyn. Syst., 1-13. https://doi.org/10.1007/s12591-015-0241-2.
- Bhardwaj, G., Singh, I.V., Mishra, B.K. and Bui, T.Q. (2015), "Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions", Compos. Struct., 126, 347-359. https://doi.org/10.1016/j.compstruct.2015.02.066.
- Doan, D., Do, T.V., Nguyen, N.X., Vinh, P.V. and Trung, N.T. (2021), "Multi-phase-field modelling of the elastic and buckling behaviour of laminates with ply cracks", Appl. Math. Model., 94, 68-86. https://doi.org/10.1016/j.apm.2020.12.038.
- Dornisch, W., Vitucci, G. and Klinkel, S. (2015), "The weak substitution method - an application of the mortar method for patch coupling in NURBS-based isogeometric analysis", Int. J. Numer. Meth. Eng., 103, 205-234. https://doi.org/10.1002/nme.4918.
- Du, X., Zhao, G., Wang, W. and Fang, H. (2020), "Nitsche's method for non-conforming multipatch coupling in hyperelastic isogeometric analysis", Comput. Mech., 65, 687-710. https://doi.org/10.1007/s00466-019-01789-x.
- Du, X., Zhao, G., Wang, W., Liu, B. and Fang, H. (2017), "Application of isogeometric method to free vibration of Reissner-Mindlin plates with non-conforming multi-patch", Comput. Aid. Des., 82, 127-139. https://doi.org/10.1016/j.cad.2016.04.006.
- Fazilati, J. and Khalafi, V. (2019), "Effects of embedded perforation geometry on the free vibration of tow steered variable stiffness composite laminated panels", Thin Wall. Struct., 144, 106287. https://doi.org/10.1016/j.tws.2019.106287.
- Fazilati, J. and Khalafi, V. (2020), "Dynamic analysis of the composite laminated repaired perforated plates by using multi-patch IGA method", Chin. J. Aeronaut., 34(1), 266-280. https://doi.org/10.1016/j.cja.2020.09.038.
- Gayen, D., Rajiv, T. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: a review", Compos. Part B, 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982.
- Gu, J., Yu, T., Lich Le, V., Nguyen, T. and Bui, T.Q. (2018), "Adaptive multi-patch isogeometric analysis based on locally refined B-splines", Comput. Meth. Appl. Mech. Eng., 339, 704-738. https://doi.org/10.1016/j.cma.2018.04.013.
- Huang, C., McGee, O.G. and Chang, M. (2011), "Vibrations of cracked rectangular FGM thick plates", Compos. Struct., 93, 1747-1764. https://doi.org/10.1016/j.compstruct.2011.01.005.
- Huang, C.S. and Leissa, A.W. (2009), "Vibration analysis of rectangular plates with side cracks via the Ritz method", J. Sound Vib., 323(3-5), 974-988. https://doi.org/10.1016/j.jsv.2009.01.018.
- Huang, C.S., Leissa, A.W. and Li, R.S. (2011), "Accurate vibration analysis of thick, cracked rectangular plates", J. Sound Vib., 330(9), 2079-2093. https://doi.org/10.1016/j.jsv.2010.11.007.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Israr, A., Cartmell, P., Manoach, E., Trendafilova, I., Ostachowicz, W., Krawczuk, M. and Zak, A. (2009), "Analytical modeling and vibration analysis of partially cracked rectangular plates with different boundary conditions and loading", J. Appl. Mech., 76(1), 11005-11013. https://doi.org/10.1115/1.2998755.
- Lee, H.P. and Lim, S.P. (1993), "Vibration of cracked rectangular plates including transverse shear deformation and rotary inertia", Comput. Struct., 49(4), 715-718. https://doi.org/10.1016/0045-7949(93)90074-N.
- Li, K., Yu, T., Bui, T.Q. (2020), "Adaptive extended isogeometric upper-bound limit analysis of cracked structures", Eng. Fract. Mech., 235, 107131. https://doi.org/10.1016/j.engfracmech.2020.107131.
- Liew, K.M., Hung, K.C. and Lim, M.K. (1994), "A solution method for analysis of cracked plates under vibration", Eng. Fract. Mech., 48(3), 393-404. https://doi.org/10.1016/0013-7944(94)90130-9.
- Lynn, P. and Kumbasar, N. (1967), "Free vibrations of thin rectangular plates having narrow cracks with simply-supported edges", 10th Midwestern Mechanics Conference, Fort Colins, 911-928.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), "Functionally graded materials: design", Processing and Applications, Kluwer Academic Publisher, Boston, MA.
- Nasirmanesh, A. and Mohammadi, S. (2017), "An extended finite element framework for vibration analysis of cracked FGM shells", Compos. Struct., 180, 298-315. https://doi.org/10.1016/j.compstruct.2017.08.019.
- Natarajan, S., Baiz, P., Bordas, S., Rabczuk, T. and Kerfriden, P. (2011), "Natural frequencies of cracked functionally graded material plates by the extended finite element method", Compos. Struct., 93, 3082-3092. https://doi.org/10.1016/j.compstruct.2011.04.007.
- Natarajan, S., Baiz, P., Ganapathi, M. and Bordas, S. (2011), "Linear free flexural vibration of cracked functionally graded plates in thermal environment", Compos. Struct., 89, 1535-1546. https://doi.org/10.1016/j.compstruc.2011.04.002.
- Nguyen, K.D., Augarde, C.E., Coombs, W.M., AbdelWahab, M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "Nonconforming multipatches for NURBS-based finite element analysis of higher-order phase-field models for brittle fracture", Eng. Fract. Mech., 235, 107133. https://doi.org/10.1016/j.engfracmech.2020.107133.
- Nguyen, V., Kerfriden, P., Brino, M., Bordas, S. and Bonisoli, E. (2014), "Nitsche's method for two and three dimensional NURBS patch coupling", Comput. Mech., 53(6), 1163-1182. https://doi.org/10.1007/s00466-013-0955-3.
- Qian, G., Gu, S. and Jiang, J. (1991), "A finite element model of cracked plates and application to vibration problems", Comput. Struct., 39(5), 483-487. https://doi.org/10.1016/0045-7949(91)90056-R.
- Shahverdi, H. and Navardi, M. (2017), "Free vibration analysis of cracked thin plates using generalized differential quadrature element method", Struct. Eng. Mech., 62(3), 345-355. http://doi.org/10.12989/sem.2017.62.3.345.
- Sinha, G.P. and Kumar, B. (2021), "Review on vibration analysis of functionally graded material structural components with cracks", J. Vib. Eng. Technol., 9, 23-49. https://doi.org/10.1007/s42417-020-00208-3.
- Solecki, R. (1983), "Bending vibration of a simply-supported rectangular plate with a crack parallel to one edge", Eng. Fract. Mech., 18(6), 1111-1118. https://doi.org/10.1016/0013-7944(83)90004-8.
- Stahl, B. and Keer, L. (1972), "Vibration and stability of cracked rectangular plates", Int. J. Solid. Struct., 8, 69-91. https://doi.org/10.1016/0020-7683(72)90052-2.
- Su, R.K.L., Leung, A.Y.T. and Wong, S.C. (1988), "Vibration of cracked Kirchhoff's plates", Key Eng. Mater., 145-149, 167-172. https://doi.org/10.4028/www.scientific.net/KEM.145-149.167
- Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P.A. (2013), "NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
- Xu, Z. and Chen, W. (2017), "Vibration analysis of plate with irregular cracks by differential quadrature finite element method", Shock Vib., 2017, 2073453. https://doi.org/10.1155/2017/2073453.
- Xue, Y., Jin, G., Ding, H. and Chen, M. (2018), "Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach", Compos. Struct., 192, 193-205. https://doi.org/10.1016/j.compstruct.2018.02.076.
- Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/10.1016/j.apm.2019.10.011.
- Yang, J., Hao, Y., Zhang, W. and Kitipornchai, S. (2010), "Nonlinear dynamic response of a functionally graded plate with a through-width surface crack", Nonlin. Dyn., 59, 207-219. https://doi.org/10.1007/s11071-009-9533-9.
- Yin, S.H., Hale, J.S., Yu, T.T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028.
- Yu, T., Bui, T.Q., Yin, S., Doan, D.H., Wu, C.T., Do, T.V. and Tanaka, S. (2016), "On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis", Compos. Struct., 136, 684-695. https://doi.org/10.1016/j.compstruct.2015.11.002.