DOI QR코드

DOI QR Code

A Review on the Screw Configuration of Intermeshing Co-rotating Twin Screw Extruder

교합형 동방향 이축압출기의 스크류 조합에 대한 고찰

  • Lee, Shichoon (Department of Chemical Engineering, Dankook University) ;
  • Kim, Hyungsu (Department of Aero-Materials Engineering, Jungwon University)
  • 이시춘 (단국대학교 공과대학 화학공학과) ;
  • 김형수 (중원대학교 항공재료공학과)
  • Received : 2021.01.12
  • Accepted : 2021.03.06
  • Published : 2021.08.01

Abstract

An intermeshing corotating twin screw extruder is mainly used for compounding polymeric materials. Twin screw extruder can adopt modular-type screw configurations, which directly controls the quality and productivity of the products. The types, shapes, and specifications of the screw and kneading elements are summarized, and the effects of screw configuration on the processabiliy of the materials are discussed. The principles of screw configuration universally applied to mass production of general-purpose resins are explained, and the guidelines of screw combination according to the roles of feeding, melt mixing, and metering zones are listed. The strategies of screw combination suitable for various cases, such as side feeding of liquid additives or inorganic fillers, reactive extrusion, devolatilization process, production of products requiring bright color and transparency, and processing of materials with low apparent specific gravity, are presented.

교합형 동방향이축압출기는 고분자재료의 컴파운딩에 주로 사용되는 기계이다. 이축압출기는 가공하는 재료와 생산제품에 적합한 스크류 조합을 설계하여 품질과 생산성이 양호한 컴파운딩공정을 구축할 수 있다. 스크류조합을 구성하는 스크류와 니딩 엘리먼트의 종류, 형상 및 사양에 대하여 정리하였고, 각각의 엘리먼트가 조합될 때 고분자 수지의 가공성에 미치는 영향에 대하여 알아보았다. 범용수지의 대량생산에 보편적으로 적용되는 스크류 조합의 원리를 설명하였고, 피딩, 용융혼련 및 미터링영역에 적합한 스크류조합의 방향과 사례를 나열하였다. 액상첨가제나 무기필러의 사이드피딩, 반응압출, 탈기공정, 밝은 색상과 투명도가 요구되는 제품의 생산 및 겉보기비중이 낮은 재료의 가공 등 각각의 경우에 맞는 스크류조합의 방향과 원리를 제시하였다.

Keywords

Acknowledgement

이논문은 2019년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2019R1I1A2A01051610). 압출공정 실험에 도움을 주신 비전플라닉스의 조이근 대표, 이피존의 장준수 대표께 감사드립니다.

References

  1. White, J. L., Twin Screw Extrusion. Hanser Publishers, 1993.
  2. Mascia, L. The Role of Additives in Plastics, Edward Arnold, 1972.
  3. Mascia, L. and Xanthos, M., "An Overview of Additives and Modifiers for Polymer Blends: Fact, Deductions, and Uncertainties," Adv. Polym. Technol., 11, 237-248(1992). https://doi.org/10.1002/adv.1992.060110402
  4. Xanthos, M., Functional Fillers for Plastics, Wiley-VCH, 2005.
  5. Kumar, A., Sharma, K. and Dixit, A. R., "Carbon Nanotube- and Graphene-reinforced Multiphase Polymeric Composites: Review on Their Properties and Applications," J. Mater. Sci., 55, 2682-2724(2020). https://doi.org/10.1007/s10853-019-04196-y
  6. Rauwendaal, C., Polymer Extrusion. Hanser Publishers, 1990.
  7. Jongbloed, H. A., Kiewiet, J. A., Van Dijk, J. H., Janssen, L. P., B. M. "The Self-wiping co-rotating Twin-screw Extruder as a Polymerization Reactor for Methacrylates," Polym. Eng. Sci., 35, 1569-1579(1995). https://doi.org/10.1002/pen.760351911
  8. Noriega, E. and Rauwendaal, C., Troubleshooting the Extrusion Process, Hanser Publishers, 2010.
  9. Villmow, T., Kretzschmar, B. and Potschke, P., "Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin Screw Extrusion of Polycaprolactone/multi-walled Carbon Nanotube Composites," Compos. Sci. Technol., 70, 2045-2055(2010). https://doi.org/10.1016/j.compscitech.2010.07.021
  10. Kang, M. S., Kang, B. S., Sim, H. S., Son, J. M., Lee, K. H. and Park, M., "Effect of Screw Configuration on Filler Dispersion in Intermeshing Corotating Twin Screw Extruder," Polym.-Korea, 35, 99-105(2011). https://doi.org/10.7317/pk.2011.35.2.99
  11. Lekube, B. M., Purgleitner, B., Renner, K. and Burgstaller, C., "Influence of Screw Configuration and Processing Temperature on the Properties of Short Glass Fiber Reinforced Propylene Composite," Polym. Eng. Sci., 59, 1552-1559(2019). https://doi.org/10.1002/pen.25153
  12. Villmow, T., Potschke, P., Pegel, S., Haussler, L. and Kretzschmar, B., "Influence of Twin-screw Extrusion Conditions on the Dispersion of Multi-walled Carbon Nanotubes in a Poly(lactic acid) Matrix," Polymer, 49, 3500-3509(2008). https://doi.org/10.1016/j.polymer.2008.06.010
  13. Todd, D. B., "Melting of Plastics on Kneading Blocks," Intern. Polym. Proc., 8, 113-118(1993). https://doi.org/10.3139/217.930113
  14. Rauwendaal, C., "Dispersed Solid Melting Theory," SPE-ANTEC Tech. Papers, 51, 2232-2237(1993).
  15. Busby, M. L., McCullough, T. W., Hughes, K. R., Kirk, R. O., "Melting of Homopolymers in co-rotating Intermeshing Twinscrew Extruders," SPE-ANTEC Tech. Papers, 54, 3571-3576(1996).
  16. Shih, C. K., Tynan, D. G. and Denelsbek, D. A., "Rheological Properties of Multicomponent Polymer Systems Undergoing Melting or Softening During Compounding," Polym. Eng. Sci., 31, 1670-1673(1991). https://doi.org/10.1002/pen.760312307
  17. Gogos, C. G., Tadmor, Z. and Kim, M. H., "Melting Phenomena and Mechanisms in Polymer Processing Equipment," Adv. Polym. Technol., 17, 285-305(1998). https://doi.org/10.1002/(SICI)1098-2329(199824)17:4<285::AID-ADV1>3.0.CO;2-N
  18. Todd, D. B. and Irving, H. F., "Axial Mixing and Self-wiping Reactor," Chem. Eng. Prog., 65, 84-89(1969).
  19. Todd, D. B., "Drag and Pressure Flow in a Twin-screw-extruder," Int. Polym. Proc., 5, 143-147(1991). https://doi.org/10.3139/217.910143
  20. Goffart, D., Van Der Wal, D. J., Klomp, E. M., Hoogstraten, H. W., Janssen, L. P. B. M., Breysse, L. and Trolez, Y., "Three-dimensional Flow Modeling of a Self-wiping Corotating Twin-screw Extruder. Part I: The Transporting Section," Polym. Eng. Sci., 36, 901-911(1996). https://doi.org/10.1002/pen.10478
  21. Goffart, D., Klomp, E. M., Hoogstraten, H. W. and Janssen, L. P. B. M., "Three-dimensional Flow Modeling of a Self-wiping Corotating Twin-screw Extruder. Part II: The Kneading Section," Polym. Eng. Sci., 36, 912-924(1996). https://doi.org/10.1002/pen.10479
  22. Bawiskar, S. and White, J. L., "Melting Model for Modular Self Wiping Co-rotating Twin Screw Extruders," Polym. Eng. Sci., 38, 727-740(1998). https://doi.org/10.1002/pen.10238
  23. Rauwendaal, C., "Analysis and Experimental Evaluation of Twin Screw Extruders," Polym. Eng. Sci., 21, 1092-1100(1981). https://doi.org/10.1002/pen.760211608
  24. Bawiskar, S. and White, J. L., "A Composite Model for Solid Conveying, Melting, Pressure and Fill Factor Profiles in Modular co-rotating Twin Screw Extruders," Int. Polym. Proc., 12, 331-340(1997). https://doi.org/10.3139/217.970331
  25. Bawiskar, S. and White, J. L., "Solids Conveying and Melting in a Starve Fed Self-wiping co-rotating Twin Screw Extruder," Int. Polym. Proc., 10, 105-110(1995). https://doi.org/10.3139/217.950105
  26. Yacu, W. A., "Modeling a Twin Screw co-rotating Extruder," J. Food Process Eng., 8, 1-21(1985). https://doi.org/10.1111/j.1745-4530.1985.tb00095.x
  27. Potente, H. and Melisch, U., "Theoretical and Experimental Investigations of the Melting of Pellets in co-rotating Twin-screw Extruders," Int. Polym. Proc., 11, 101-108(1996). https://doi.org/10.3139/217.960101
  28. Lewandowski, A., Wilczynski, K. J., Nastaj, A. and Wilczynski, K., "A Composite Model for An Intermeshing Counter-rotating Twin-screw Extruder and Its Experimental Verification," Polym. Eng. Sci., 55, 2838-2848(2015). https://doi.org/10.1002/pen.24175
  29. Potente, H., Melisch, U. and Palluch, K. P., "A Physico-mathematical Model for Solids Conveying in co-rotating Twin Screw Extruders," Int. Polym. Proc., 11, 29-41(1996). https://doi.org/10.3139/217.960029
  30. Xanthos, M., Reactive Extrusion: Principles and Practice. Hanser Publishers, 1992.
  31. Beyer, G. and Hopmann, C., Reactive Extrusion: Principles and Applications. Wiley-VCH, 2018.
  32. Lee, S. M., Park, J. C., Lee, S. M., Ahn, Y. J. and Lee, J. W., "Inline Measurement of Residence Time Distribution in Twin-screw Extruder Using Non-destructive Ultrasound," Korea-Australia Rheol. J., 17, 87-95(2005).
  33. Al-Itry, R., Lamnawar, K. and Maazouz, A., "Reactive Extrusion of PLA, PBAT with a Multi-functional Epoxide: Physicochemical and Rheological Properties," Eur. Polym. J., 58, 90-102(2014). https://doi.org/10.1016/j.eurpolymj.2014.06.013
  34. Todd, D. B., "Residence Time Distribution in Twin-screw Extruders," Polym. Eng. Sci., 15, 437-443(1975). https://doi.org/10.1002/pen.760150607
  35. Poulesquen, A., Vergnes, B., Cassagnau, P., Michiel, A., Carneiro, O. S. and Covas, J. A., "A Study of Residence Time Distribution in co-rotating Twin Screw Extruders. Part II: Experimental Validation," Polym. Eng. Sci., 43, 1849-1862(2003). https://doi.org/10.1002/pen.10157
  36. Poulesquen, A. and Vergnes, B., "A Study of Residence Time Distribution in co-rotating Twin-screw Extruders. Part I: Theoretical Modeling," Polym. Eng. Sci., 43, 1841-1848(2003). https://doi.org/10.1002/pen.10156
  37. Collins, G. P., Denson, C. D. and Astarita, G., "The Length of a Transfer Unit (LTU) for Polymer Devolatilization Processes in Screw Extruders," Polym. Eng. Sci., 23, 323-327(1983). https://doi.org/10.1002/pen.760230606
  38. Collins, G. P., Denson, C. D. and Astarita, G., "Determination of Mass Transfer Coefficients for Bubble-free Devolatilization of Polymeric Solutions in Twin-screw Extruders," AIChE J., 31, 1288-1296(1985). https://doi.org/10.1002/aic.690310807
  39. Biesenberger, J. A., Dey, S. K. and Brizzolara, J., "Devolatilization of Polymer Melts: Machine Geometry and Scale Factors," Polym. Eng. Sci., 30, 1493-1499(1990). https://doi.org/10.1002/pen.760302302
  40. Foster, R. W. and Lindt, J. T., "Bubble-free Devolatilization in Counterrotating Nonintermeshing Twin-screw Extruder," Polym. Eng. Sci., 30, 424-430(1990). https://doi.org/10.1002/pen.760300707
  41. Wang, N. H., Sakai, T. and Hashimoto, N., "Modeling of Polymer Devolatilization in a Multi-vent Screw Extruder," Int. Polym. Proc., 10, 296-304(1995). https://doi.org/10.3139/217.950296
  42. Wang, N. H., Sakai, T. and Hashimoto, N., "Pumping Characteristics of an Intermeshing co-rotating Twin Screw Extruder," Int. Polym. Proc., 13, 27-32(1998). https://doi.org/10.3139/217.980027
  43. White, J. L., Keum, J., Jung, H., Ban, K. and Bumm, S., "Corotating Twin-screw Extrusion Reactive Extrusion Devolatilization Model and Software," Polym. Plast. Technol. Eng., 45, 539-548 (2006). https://doi.org/10.1080/03602550600554091
  44. Foster, R. W. and Lindt, J. T., "Bubble Growth Controlled Devolatilization in Twin-screw Extruders," Polym. Eng. Sci., 29, 178-185(1989). https://doi.org/10.1002/pen.760290305
  45. Foster, R. W. and Lindt, J. T., "Twin Screw Extrusion Devolatilization: From Foam to Bubble Free Mass Transfer," Polym. Eng. Sci., 30, 621-626(1990). https://doi.org/10.1002/pen.760301102
  46. Ohara, M., Sasai, Y., Umemoto, S., Obata, Y., Sugiyama, T., Tanifuji, S., Kihara, S. and Taki, K., "Experimental and Numerical Simulation Study of Devolatilization in a Self-Wiping Corotating Parallel Twin-Screw Extruder," Polymers, 12, 2728(2020). https://doi.org/10.3390/polym12112728
  47. Breuer, O. and Sundararaj, U., "Big Returns from Small Fibers: A Review of Polymer/carbon Nanotube Composites," Polym. Compos., 25, 630-645(2004). https://doi.org/10.1002/pc.20058
  48. McNally, T. and Potschke, P., "Polymer-carbon Nanotube Composites: Preparation, Properties and Applications," Woodhead Publishing in Materials, 2011.
  49. Mohan, V. B., Lau, K., Hui, D. and Bhattacharyya, D., "Graphenebased Materials and Their Composites: A Review on Production, Applications and Product Limitations," Compos. Part B-Eng., 142, 200-220(2018). https://doi.org/10.1016/j.compositesb.2018.01.013
  50. Kasaliwal, G. R., Pegel, S., Goldel, A., Potschke, P. and Heinrich, G., "Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes During Melt Mixing in Polycarbonate," Polymer, 51, 2708-2720(2010). https://doi.org/10.1016/j.polymer.2010.02.048
  51. Novais, R. M., Simon, F., Paiva, M. C. and Covas, J. A., "The Influence of Carbon Nanotube Functionalization Route on the Efficiency of Dispersion in Polypropylene by Twin-screw Extrusion," Compos. Part A-Appl. S., 43, 2189-2198(2012). https://doi.org/10.1016/j.compositesa.2012.08.004
  52. Muller, M. T., Krause, B., Kretzschmar, B. and Potschke, P., "Influence of Feeding Conditions in Twin-screw Extrusion of PP/MWCNT Composites on Electrical and Mechanical Properties," Compos. Sci. Technol., 71, 1535-1542(2011). https://doi.org/10.1016/j.compscitech.2011.06.003
  53. Bangarusampath, D. S., Ruckdaschel, H., Alstadt, V., Sandler, J. K. W., Garray, D. and Shaffer, M. S. P., "Rheology and Properties of Melt-processed poly(ether ether ketone)/multi-wall Carbon Nanotube Composites," Polymer, 50, 5803-5811(2009). https://doi.org/10.1016/j.polymer.2009.09.061
  54. Verma, P., Saini, P., Malik, R. S. and Choudhary, V., "Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-nanotubes/polymer Composites Designed Using Melt Recirculation Equipped Twin-screw Extruder," Carbon, 89, 308-317(2015). https://doi.org/10.1016/j.carbon.2015.03.063
  55. Jiang, Z., Hornsby, P., McCool, R. and Murphy, A., "Mechanical and Thermal Properties of Polyphenylene Sulfide/multiwalled Carbon Nanotube Composites," J. Appl. Polym. Sci., 123, 2676-2683(2012). https://doi.org/10.1002/app.34669
  56. Chowreddy, R. R., Nord-Varhaug, K. and Rapp, F., "Recycled Polyethylene Terephthalate/carbon Nanotube Composites with Improved Processability and Performance," J. Mater. Sci., 53, 7017-7029(2018). https://doi.org/10.1007/s10853-018-2014-0
  57. Zhang, Q., Rastogi, S., Chen, D., Lippits, D. and Lemstra, P. J., "Low Percolation Threshold in Single-walled Carbon Nanotube/high Density Polyethylene Composites Prepared by Melt Processing Technique," Carbon, 44, 778-785(2006). https://doi.org/10.1016/j.carbon.2005.09.039
  58. Arrigo, R. and Malucelli, G., "Rheological Behavior of Polymer/carbon Nanotube Composites: an Overview," Materials, 13, 2771 (2020). https://doi.org/10.3390/ma13122771