DOI QR코드

DOI QR Code

Electrochemical Performance of PFO Pitch coated Natural Graphite using Dry Speed Mixer

건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능

  • Youn, Jae Woong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 윤재웅 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2021.03.17
  • Accepted : 2021.04.19
  • Published : 2021.08.01

Abstract

To improve the capacity and stability of natural graphite, the electrochemical performances were investigated by using the prepared natural graphite coated with petroleum pitch for anode materials. The pitch coated natural graphite was prepared using a dry speed mixer by adjusting the rotation speed of the mixer, time, composition of graphite and softening point of the pitch. The physical properties of the anode material were analyzed using SEM, TEM, and PSD. The electrochemical performances were investigated by cycle, C-rate, EIS and CV test. When the pitch coated natural graphite was tested in the condition of 9000 RPM, 10 wt%, 2 h, and softening point of 150 ℃, it showed the highest capacity of 324.5 mAh/g at 0.1 C and a capacity retention rate of 98.9% after 50 cycles. In the test for evaluating rate performance, the capacity retention rate (5 C/0.1 C) was 80.3% and was improved by about 1.7 times over the pristine natural graphite.

본 연구에서는 천연 흑연의 용량과 안정성을 개선하기 위해 석유계 피치로 코팅된 천연 흑연을 제조하여 전기화학적 성능을 평가하였다. 천연흑연과 피치를 건식 스피드 믹서를 이용해 코팅하였으며, 믹서의 회전 속도, 시간, 흑연과 피치의 조성, 피치의 연화점을 변화시키면서 음극 활물질을 제조하였다. 제조된 음극 활물질의 물리적 특성은 SEM, TEM, PSD를 이용해 분석하였으며, 전기화학적 성능은 사이클, 율속, 임피던스, 순환전압 전류 테스트를 통해 조사하였다. 9000 RPM, 10 wt%, 2 h, 연화점 150 ℃ 조건에서 코팅된 천연 흑연을 0.1 C에서 전기화학적 특성을 테스트 하였을 때, 324.5 mAh/g 의 가장 높은 용량과 50 사이클 이후 98.9%의 용량 유지율을 보였다. 고속 충·방전을 위한 테스트에서는 5 C/0.1 C 용량 유지율은 80.3%로 나타났으며, 코팅되지 않은 천연흑연보다 약 1.7 배로 향상된 용량 유지율을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 한국산업기술평가원의 2020년 "석유계 기반 인조흑연음극재 제조기술 개발" 지원 사업으로 수행되었으며, 이에 감사드립니다.

References

  1. Liang, G., Qin, X., Zou, J., Luo, L., Wang, Y., Wu, M., Zhu, H., Chen, G., Kang, F. and Li, B., "Electrosprayed Silicon-embedded Porous Carbon Microspheres as Lithium-ion Battery Anodes with Exceptional Rate Capacities," Carbon, 127, 424-431(2018). https://doi.org/10.1016/j.carbon.2017.11.013
  2. Kawamoto, M., He, P. and Ito, Y., "Green Processing of Carbon Nanomaterials," Adv. Mater, 29, 1602423(2017). https://doi.org/10.1002/adma.201602423
  3. Park, Y., Hong, Y. K. and Lee, K., "Effect of Amorphous Carbon-Coating on Low-purity Natural Graphite as An Anode ActiveMaterial for Lithium-ion Batteries," J. Ceram. Process. Res., 18(7), 488-493(2017). https://doi.org/10.36410/JCPR.2017.18.7.488
  4. Lee, M. L., Li, Y. H., Liao, S. C., Chen, J. M., Yeh, J. W. and Shih, H.C., "Li4Ti5O12-coated Graphite Anode Materials for Lithium-ion Batteries," Electrochimica. Acta., 112, 529-534(2013). https://doi.org/10.1016/j.electacta.2013.08.150
  5. Peled, E., Golodnitsky, D., Menachem, C. and Bar-Tow, D., "An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries," J. Electrochem. Soc., 145, 3482-3486(1998). https://doi.org/10.1149/1.1838831
  6. Park, D. Y., Park, D. Y., Lan, Y., Lim, Y. S. and Kim, M. S., "High Rate Capability of Carbonaceous Composites as Anode Electrodes for Lithium-ion Secondary Battery," Ind. Eng. Chem. Res., 15, 588-594(2009). https://doi.org/10.1016/j.jiec.2009.03.001
  7. Jo, Y. J. and Lee, J. D., "Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent," Korean Chem. Eng. Res., 57(1), 5-10(2019).
  8. Yoon, S. H., Kim, H. J. and Oh, S. M., "Surface Modification of Graphite by Coke Coating for Reduction of Initial Irreversible Capacity in Lithium Secondary Batteries," J. Power Sources., 94, 68-73(2001). https://doi.org/10.1016/S0378-7753(00)00601-7
  9. Wang, C., Zhao, H., Wang, J., Wang, J. and Lv, P., "Electrochemical Performance of Modified Artificial Graphite as Anode Material for Lithium Ion Batteries," Solid State Ion., 19, 221(2013).
  10. Wan, C., Li, H., Wu, M. and Zhao, C., "Spherical Natural Graphite Coated by a Thick Layer of Carbonaceous Mesophase for Use as an Anode Material in Lithium Ion Batteries," J. Appl. Electrochem., 39, 1081-1086(2009). https://doi.org/10.1007/s10800-008-9761-6
  11. Kim, J. H., Xiao, C. F., Go, K., Lee, K. J., and Kim, H. S., "The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery,C.J. Korean Inst. Electr. Electron. Mater. Eng, 32(6), 437-443(2019).
  12. Canakci, A., Varol, T., Cuvalci, H., Erdemir, F., Ozkaya, S. and Yalcin, E. D., "Synthesis of Novel CuSn10-graphite Nanocomposite Powders by Mechanical Alloying," Micro Nano Lett., 9(2), 109-112(2014). https://doi.org/10.1049/mnl.2013.0715
  13. Lijia, C., Haibin, C., Rongyong, L. I., Weifeng, H. E. and Yuhui, Y., "Fabrication of Nickel Coatings on Zirconia Balls by Mechanical Ball Milling and the Process Analysis," Materials Science (2021).
  14. Kim, K. H., Lee, S., An, D. and Lee, Y. S., "Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block," Appl. Chem. Eng., 28(4), 432-436(2017). https://doi.org/10.14478/ace.2017.1035
  15. Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Pejovnik, S. and Jamnik, J., "Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4/C Composites," ECS J Solid State Sci Technol, 152(3), A607-A610 (2005).
  16. Wan, C., Li, H., Wu, M. and Zhao, C., "Spherical Natural Graphite Coated by a Thick Layer of Carbonaceous Mesophase for Use as An Anode Material in Lithium ion Batteries," J. Appl. Electrochem., 39(7), 1081-1086(2008). https://doi.org/10.1007/s10800-008-9761-6
  17. Kim, K. S., Kim, J. H., Hwang, J. U., Im, J. S. and Lee, J. D., "Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficeiency and Rate Performance," Korean Chem. Eng. Res. 30(3), 331-336(2019).
  18. Park, D., Park, D., Yu-Lan, Lim, Y. and Kim, M., "High Rate Capability of Carbonaceous Composites as Anode Electrodes for Lithium-ion Secondary Battery," J. Ind. Eng. Chem., 15(4), 588-594(2009). https://doi.org/10.1016/j.jiec.2009.03.001
  19. Yang, Y., Wang, Z., Zhou, Y., Guo, H. and Li, X., "Synthesis of Porous Si/graphite/carbon Nanotubes@c Composites as a Practical Highcapacity Anode for Lithium-ion Batteries," Materials Lett., 199, 84-87(2017). https://doi.org/10.1016/j.matlet.2017.04.057
  20. Wang, H. and Yoshio, M., "Carbon-coated Natural Graphite Prepared by Thermal Vapor Decomposition Process, a Candidate Anode Material for Lithium-ion Battery," J. Power Sources, 93(1-2), 123-129(2001). https://doi.org/10.1016/S0378-7753(00)00552-8