참고문헌
- Cover T and Hart P (1967). Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 13, 21-27. https://doi.org/10.1109/TIT.1967.1053964
- Craven P and Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematik, 31, 377-403. https://doi.org/10.1007/BF01404567
- Dalla Rosa M, Sangalli LM, and Vantini S (2014). Principal differential analysis of the Aneurisk65 data set, Advances in Data Analysis and Classification, 8, 287-302. https://doi.org/10.1007/s11634-014-0175-5
- Fukunaga K (2013). Introduction to Statistical Pattern Recognition (2nd ed), Elsevier, Boston.
- Grenander U (1950). Stochastic processes and statistical inference, Arkiv Matematik, 1, 195-277. https://doi.org/10.1007/BF02590638
- Jin S, Staniswalis JG, and Mallawaarachchi I (2013). Principal differential analysis with a continuous covariate: low-dimensional approximations for functional data, Journal of Statistical Computation and Simulation, 83, 1964-1980. https://doi.org/10.1080/00949655.2012.675575
- Kincaid C (2005). Guidelines for selecting the covariance structure in mixed model analysis. In Proceedings of the Thirtieth Annual SAS Users Group International Conference (Vol. 30, pp. 198-130). SAS Institute Inc Cary NC.
- Kosarev EL and Pantos E (1983). Optimal smoothing of noisy data by fast Fourier transform, Journal of Physics E: Scientific Instruments, 16, 537. https://doi.org/10.1088/0022-3735/16/6/020
- Leng X and Muller HG (2006). Classification using functional data analysis for temporal gene expression data, Bioinformatics, 22, 68-76. https://doi.org/10.1093/bioinformatics/bti742
- Muller HG (2005). Functional modelling and classification of longitudinal data, Scandinavian Journal of Statistics, 32, 223-240. https://doi.org/10.1111/j.1467-9469.2005.00429.x
- Nie Y, Wang L, Liu B, and Cao J (2018). Supervised functional principal component analysis, Statistics and Computing, 28, 713-723. https://doi.org/10.1007/s11222-017-9758-2
- Ramsay JO (1982). When the data are functions, Psychometrika, 47, 379-396. https://doi.org/10.1007/BF02293704
- Ramsay JO (1996). Principal differential analysis: Data reduction by differential operators, Journal of the Royal Statistical Society: Series B (Methodological), 58, 495-508. https://doi.org/10.1111/j.2517-6161.1996.tb02096.x
- Ramsay JO and Dalzell CJ (1991). Some tools for functional data analysis, Journal of the Royal Statistical Society: Series B (Methodological), 53, 539-561. https://doi.org/10.1111/j.2517-6161.1991.tb01844.x
- Ramsay JO and Silverman BW (2005). Functional Data Analysis, Springer, New York.
- Reimer M and Rudzicz F (2010). Identifying articulatory goals from kinematic data using principal differential analysis. In Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan September 26-30.
- Rice JA (2004). Functional and longitudinal data analysis: perspectives on smoothing, Statistica Sinica, 14, 631-647.
- Sattar F and Rudzicz F (2016). Principal differential analysis for detection of bilabial closure gestures from articulatory data, Computer Speech & Language, 36, 294-306. https://doi.org/10.1016/j.csl.2015.07.002
- Staniswalis JG, Dodoo C, and Sharma A (2017). Local principal differential analysis: Graphical methods for functional data with covariates, Communications in Statistics-Simulation and Computation, 46, 2346-2359. https://doi.org/10.1080/03610918.2015.1043387
- Tumer K and Ghosh J (2003). Bayes Error rate estimation using classifier ensembles, Smart Engineering System Design, 5, 95-109. https://doi.org/10.1080/10255810305042
- Wand MP (2000). A comparison of regression spline smoothing procedures, Computational Statistics, 15, 443-462. https://doi.org/10.1007/s001800000047