DOI QR코드

DOI QR Code

Space grillage analysis model of steel-concrete composite beam

  • Lu, Pengzhen (College of Civil Engineering, Zhejiang University of Technology) ;
  • Li, Dengguo (College of Civil Engineering, Zhejiang University of Technology) ;
  • Wu, Ying (Jiaxing Nanhu University) ;
  • Huang, Simin (College of Civil Engineering, Zhejiang University of Technology) ;
  • Zhang, Yijie (College of Civil Engineering, Zhejiang University of Technology)
  • 투고 : 2020.02.04
  • 심사 : 2021.06.13
  • 발행 : 2021.07.25

초록

In order to accurately grasp the mechanical behavior of the composite beam structure and achieve its refined analysis. In this paper, the stiffness matrix of a new type of spatial grid element is derived using the principle of energy variation. Based on the spatial grid element, a finite element analysis program is written using MATLAB software. A new type of spatial grid element analysis method that can be used for the overall force analysis of composite beam structures as well as the local refined analysis of the structure is proposed. In addition, the internal force, stress and displacement of each part of the composite beam can also be directly obtained. In order to verify the accuracy and reliability of the spatial grid analysis element proposed in this paper. The composite beam in the existing references are used as the analysis object, and the analysis result of the spatial grid element is compared with the references result. The research results show that the analysis results of spatial grid elements have high accuracy and can realize the refined analysis of composite beams.

키워드

과제정보

The authors gratefully acknowledge the financial support provided by the Science Foundation of China Postdoctor (Grant No. 2016M600352), the Science and Technology Agency of Zhejiang Province (Grant No. LGF19E080012) and the Science and Technology Project of Zhejiang Provincial Department of Transportation (Grant No. 2019H14 and 2018010). Jiaxing Science and Technology Bureau of China under Gra nt (2021AY10043).

참고문헌

  1. Alberty, J., Carstensen, C., Funken, S.A. and Klose, R. (2002), "Matlab implementation of the finite element method in elasticity", Computing, 69(3), 239-263. https://doi.org/10.1007/s00607-002-1459-8.
  2. Alnefaie, K. (2009), "Finite element modeling of composite plates with internal delamination", Compos. Struct., 90(1), 21-27. https://doi.org/10.1016/j.compstruct.2009.01.004.
  3. Andersen, M.E.M., Poulsen, P.N. and Olesen, J.F. (2021). "Finiteelement limit analysis for solid modeling of reinforced concrete", J. Struct. Eng., 147(5). https://doi.org/10.1061/(asce)st.1943-541x.0002979.
  4. Chan, C.L., Khalid, Y.A., Sahari, B.B. and Hamouda, A.M.S. (2002), "Finite element analysis of corrugated web beams under bending", J. Constr. Steel Res., 58(11), 1391-1406. https://doi.org/10.1016/s0143-974x(01)00075-x.
  5. Dong, S.L., Zhang, Z.H. and Li, Y.Q. (2002), "Research on geometrical nonlinar finite element method of spatial reticulated structures", Chinese J. Comput. Mech., 19(3), 365-368. (In Chinese). https://doi.org/10.1007-4708(2002)03-0365-04.
  6. Du, B.S., Xiang, H.F., Ge, Y.J. and Zhu, L.D. (2008), "Derivation and application of 3D-beam's element stiffness and mass matrix with shear effect", J. Chongqing Jiaotong Univ., (Natural Science), 27(4), 502-507. (In Chinese). https://doi.org/10.1674-0696(2008)04-0502-06. https://doi.org/10.1674-0696(2008)04-0502-06
  7. Li, F.X. and Nie, J.G. (2011), "Elastic analytical solutions of shear lag effect of steel-concrete composite beam", Eng. Mech., 28(9), 1-8. (In Chinese). https://doi.org/10.1000-4750(2011)09-0001-08. https://doi.org/10.1000-4750(2011)09-0001-08
  8. Li, J., Jiang, L. and Li, X.B. (2017), "Free vibration of a steelconcrete composite beam with coupled longitudinal and bending motions", Steel Compos. Struct., 24(1), 79-91. https://doi.org/10.12989/scs.2017.24.1.079.
  9. Li, X.Y., Wan, S., Zhang, Y.H., Zhou, M.D. and Mo, Y.L. (2021), "Beam finite element for thin-walled box girders considering shear lag and shear deformation effects", Eng. Struct., 233, 16. https://doi.org/10.1016/j.engstruct.2021.111867.
  10. Lin, J.P., Wang, G N., Bao, G.J. and Xu, R.Q. (2017), "Stiffness matrix for the analysis and design of partial-interaction composite beams", Constr. Build. Mater., 156, 761-772. https://doi.org/10.1016/j.conbuildmat.2017.08.154.
  11. Liu, P.F., Hou, S.J., Chu, J.K., Hu, X.Y., Zhou, C.L., Liu, Y.L. and Yan, L. (2011), "Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique", Compos. Struct., 93(6), 1549-1560. https://doi.org/10.1016/j.compstruct.2010.12.006.
  12. Luo, D., Zhang, Z.W. and Li, B. (2019), "Shear lag effect in steelconcrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. https://doi.org/10.12989/scs.2019.31.1.027.
  13. Marjanovic, M., Meschke, G. and Vuksanovic, D. (2016), "A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method", Compos. Struct., 150, 8-19. https://doi.org/10.1016/j.compstruct.2016.04.044.
  14. Men, P.F., Zhou, X.H., Zhang, Z.X., Di, J. and Qin, F.J. (2021), "Behaviour of steel-concrete composite girders under combined negative moment and shear", J. Constr. Steel Res., 179, 18. https://doi.org/10.1016/j.jcsr.2020.106508.
  15. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78. https://doi.org/10.12989/scs.2021.38.1.067.
  16. Pan, W.J. and Ye, X.G. (2012), "Derivation of element stiffness matrix and load array for space beam with shear effect based on energy variation", Ind. Constr., 42(6), 41-45. (In Chinese) https://doi.org/10.13204/j.gyjz2012.06.026.
  17. Sapountzakis, E.J. and Katsikadelis, J.T. (2003), "A new model for the analysis of composite steel-concrete slab and beam structures with deformable connection", Comput. Mech., 31(3-4), 340-349. https://doi.org/10.1007/s00466-003-0436-1.
  18. Soto, A.G., Caldentey, A.P., Peiretti, H.C. and Benitez, J.C. (2020), "Experimental behaviour of steel-concrete composite box girders subject bending, shear and torsion", Eng. Struct., 206, 17. https://doi.org/10.1016/j.engstruct.2020.110169.
  19. Wang, G.M., Zhu, L., Ji, X.L. and Ji, W.Y. (2020), "Finite beam element for curved steel-concrete composite box beams considering time-dependent effect", Materials, 13(15), 17. https://doi.org/10.3390/ma13153253.
  20. Wang, K.Z., Wang, L. and Yan, J. (2019), "Variational principle for contact Hamiltonian systems and its applications", J. De Mathematiques Pures Et Appliquees, 123, 167-200. https://doi.org/10.1016/j.matpur.2018.08.011.
  21. Xie, Y.X. and Li, S.F. (2021), "A stress-driven computational homogenization method based on complementary potential energy variational principle for elastic composites", Comput. Mech., 67(2), 637-652. https://doi.org/10.1007/s00466-020-01953-8.
  22. Xu, R.Q. and Wang, G.N. (2012), "Variational principle of partialinteraction composite beams using Timoshenko's beam theory", Int. J. Mech. Sci., 60(1), 72-83. https://doi.org/10.1016/j.ijmecsci.2012.04.012.
  23. Yasunori, A., Sumio, H. and Kajita, T. (1981), "Elastic-plastic analysis of composite beams with incomplete interaction by finite element method", Comput. Struct., 14(5-6), 453-462. doi:10.1016/0045-7949(81)90065-1.
  24. Zhang, H., Quan, L.W., Wang, L., Wu, J.X. and Zhang, Z.C. (2021), "Analyses on long-term behavior of composite steel - concrete beams with weak interface using a state space approach", Eng. Struct., 231, https://doi.org/10.1016/j.engstruct.2020.111781.