DOI QR코드

DOI QR Code

Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches

  • Aksoylu, Ceyhun (Department of Civil Engineering, Konya Technical University)
  • 투고 : 2020.11.06
  • 심사 : 2021.06.24
  • 발행 : 2021.07.25

초록

This study was conducted to present a new technique to increase the capacity of reinforced concrete beams with insufficient shear reinforcement. Four beam specimens at ½ scale were produced. One of these beams was used for reference, while the other three were strengthened using different methods. The strengthening methods were performed using Mechanical stitches (MS), Glass fiber reinforced polymer (GFRP), and a hybrid of the two (GFRP and MS). In the experiments, the reference beam (E0), the MS-strengthened beam (E1), the GFRP-strengthened beam (E2), and the GFRP+MS-strengthened (E3) beam were tested under vertical load. Following the experiment, vertical load-bearing capacity, ductility value, initial stiffness value, and energy dissipation capacity were calculated for each beam. Afterward, extensive micro and macro damage analyses were performed. In the experiment, the E0 specimen resulted in a failure mode with direct shear damage. The strengthened E1 and E2 beams showed a typical bending behavior. The vertical load-bearing capacity of the E1 and E2 beams increased by 16.8% and 18.1%, respectively, compared to E0. The load-bearing capacity of the newly proposed technique, the hybrid E3 beam, was increased by 19.2%, although it failed with shear damage. Thus, this study has clearly demonstrated that beams with insufficient shear reinforcement can be strengthened using single-layer GFRP (E2). Considering its cost-efficiency compared to other composite materials, it has been suggested that GFRP should be used more widely in the market. In addition, it is reccommended that future studies can use the proposed E1 strengthening for beams weak against shear. The experiments revealed the most appropriate strengthening method for shear beams to be E1>E2>E3 in terms of performance/cost. Finally, the results suggest that the proposed hybrid strengthening (E3) can be turned to a ductile behavior through further experiments with different configurations.

키워드

과제정보

The author would like to thank Yardimci Prefabricated Building Components Inc. for the production of beam specimens.

참고문헌

  1. Abdel-Jaber, M., Walker, P. and Hutchinson, A. (2003), "Shear strengthening of reinforced concrete beams using different configurations of externally bonded carbon fibre reinforced plates", Mater. Struct., 36(5), 291-301. https://doi.org/10.1007/BF02480868.
  2. Abu Tahnat, Y.B., Dwaikat, M.M.S. and Samaaneh, M.A. (2018), "Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint", Compos. Struct., 201, 721-739. https://doi.org/10.1016/j.compstruct.2018.06.082.
  3. Abu Tahnat, Y.B., Samaaneh, M.A., Dwaikat, M.M.S. and Halahla, A.M. (2020), "Simple equations for predicting the rotational ductility of fiber-reinforced-polymer strengthened reinforced concrete joints", Structures, 24, 73-86. https://doi.org/10.1016/j.istruc.2020.01.010.
  4. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Shear strengthening of RC beams with web-bonded continuous steel plates", Constr. Build. Mater., 20(5), 296-307. https://doi.org/10.1016/j.conbuildmat.2005.01.026.
  5. Aksoylu, C. and Kara, N. (2019), "Investigation of New Generation Precast Concrete Panel Applications as Reinforcement Technique", Selcuk Univ. J. Eng. Sci. Tech., 7(2), 346-361. https://doi.org/10.15317/Scitech.2019.204.
  6. Aksoylu, C. and Kara, N. (2020), "Strengthening of RC frames by using high strength diagonal precast panels", J. Build. Eng., 31, 101338. https://doi.org/10.1016/j.jobe.2020.101338.
  7. Aksoylu, C. and Sezer, R. (2018), "Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames", KSCE J. Civil Eng., 22(1), 236-246. https://doi.org/10.1007/s12205-017-1290-6.
  8. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020a), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  9. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi. 32(3).
  10. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020b), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225
  11. Al-Sulaimani, G.J., Sharif, A., Basunbul, I.A., Baluch, M.H. and Ghaleb, B.N. (1994), "Shear repair for reinforced concrete by fiberglass plate bonding", Struct. J., 91(4), 458-464.
  12. Aljazaeri, Z.R. and Myers, J.J. (2017), "Strengthening of reinforced-concrete beams in shear with a fabric-reinforced cementitious matrix", J. Compos. Constr., 21(5), 04017041. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000822.
  13. Almassri, B. and Halahla, A.M. (2020), "Corroded RC beam repaired in flexure using NSM CFRP rod and an external steel plate", Structures, 27, 343-351. https://doi.org/10.1016/j.istruc.2020.05.054.
  14. Alshlash, S., Aksoylu, C., Erkan, I.H. and Arslan, M.H. (2019a), "Kesme Kapasitesi Yetersiz On Hasarli Betonarme Kirislerin "Dikis Demirleri" Ile Onarim/ Guclendirilmesi", Proceedings of the IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey, November.
  15. Alshlash, S., Aksoylu, C., Erkan, I.H. and Arslan, M.H. (2019b), "On Hasarli Kesme Kirislerinin CFRP Ile Onarim Ve Guclendirilmesi", Proceedings of the IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey, November.
  16. Alshlash, S., Aksoylu, C., Erkan, I.H. and Arslan, M.H. (2019c), "Strengthening Of Pre-Damaged Bending Beams With Steel Plates", Proceedings of the International Aluminium-Themed Engineering and Natural Sciences Conference, Seydisehir, Turkey, October.
  17. Altin, S., Anil, O., Toptas, T. and Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223. https://doi.org/10.12989/scs.2011.11.3.207.
  18. Anil, O. (2006), "Improving shear capacity of RC T-beams using CFRP composites subjected to cyclic load", Cement Concrete Compos., 28(7), 638-649. https://doi.org/10.1016/j.cemconcomp.2006.04.004.
  19. Anil, O. (2008), "Strengthening of RC T-section beams with low strength concrete using CFRP composites subjected to cyclic load", Constr. Build. Mater., 22(12), 2355-2368. https://doi.org/10.1016/j.conbuildmat.2007.10.003.
  20. Arslan, M.H., Aksoylu, C., Gemi, L., Yazman, S. and Ozkilic, Y.O. (2019). "Effect of Circular Holes in Shear Region on the Behavior of CFRP Strengthened RC Beams", Proceedings of the 4th Eurasian Conference on Civil and Environmental Engineering (ECOCEE), Istanbul, Turkey, June.
  21. Ashour, S.A. (2000), "Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams", Eng. Struct., 22(5), 413-423. https://doi.org/10.1016/S0141-0296(98)00135-7.
  22. Ashrafuddin, M., Baluch, M.H., Sharif, A., Al-Sulaimani, G.J., Azad, A.K. and Khan, A.R. (1999), "Peeling and diagonal tension failures in steel plated R/C beams", Constr. Build. Mater., 13(8), 459-467. https://doi.org/10.1016/S0950-0618(99)00044-6.
  23. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Constr. Build. Mater., 37, 746-757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
  24. Aykac, S. and Yilmaz, M. (2011), "Behaviour and Strength of RC Beams with Regular Triangular or Circular Web Openings", J. Faculty of Engineering & Architecture of Gazi University. 26(3), 711-718.
  25. Baggio, D., Soudki, K. and Noel, M. (2014), "Strengthening of shear critical RC beams with various FRP systems", Constr. Build. Mater., 66, 634-644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
  26. Barnes, R.A., Baglin, P.S., Mays, G.C. and Subedi, N.K. (2001), "External steel plate systems for the shear strengthening of reinforced concrete beams", Eng. Struct., 23(9), 1162-1176. https://doi.org/10.1016/S0141-0296(00)00124-3.
  27. Basaran, B. and Kalkan, I. (2020), "Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests", Compos. Struct., 242, 112185. https://doi.org/10.1016/j.compstruct.2020.112185.
  28. Bernardo, L. and Lopes, S. (2004), "Neutral axis depth versus flexural ductility in high-strength concrete beams", J. Struct. Eng., 130(3), 452-459. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(452).
  29. Bousias, S.N., Biskinis, D., Fardis, M.N. and Spathis, A.L. (2007), "Strength, stiffness, and cyclic deformation capacity of concrete jacketed members", ACI Struct. J., 104(5), 521-531.
  30. Chalioris, C.E., Thermou, G.E. and Pantazopoulou, S.J. (2014), "Behaviour of rehabilitated RC beams with self-compacting concrete jacketing - Analytical model and test results", Construction and Building Materials. 55 257-273. https://doi.org/10.1016/j.conbuildmat.2014.01.031.
  31. Chen, G., Teng, J. and Chen, J. (2013), "Shear strength model for FRP-strengthened RC beams with adverse FRP-steel interaction", J. Compos. Constr., 17(1), 50-66. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000313.
  32. Chen, J.F. and Teng, J.G. (2003), "Shear capacity of FRPstrengthened RC beams: FRP debonding", Constr. Build. Mater., 17(1), 27-41. https://doi.org/10.1016/S0950-0618(02)00091-0.
  33. Chen, W., Pham, T.M., Sichembe, H., Chen, L. and Hao, H. (2018), "Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet", Compos. Part B: Eng., 134, 114-126. https://doi.org/10.1016/j.compositesb.2017.09.053.
  34. Colalillo, M.A. and Sheikh, S.A. (2014), "Behavior of ShearCritical Reinforced Concrete Beams Strengthened with FiberReinforced Polymer-Analytical Method", ACI Struct. J., 111(6), 1385. https://doi.org/10.14359/51687036
  35. Dash, N. (2009), "Strengthening of reinforced concrete beams using glass fiber reinforced polymer composites", Ph.D.
  36. Dissertation, National Institue of Technology, Rourkela. Dogangun, A. (2008), Betonarme Yapilarin Hesap ve Tasarimi: DBYBHY-2007, TS500-2000 ve Deprem yonetmeligi-2007 ye Uygun, Birsen yayinevi, Istanbul, Turkey.
  37. Dong, J., Wang, Q. and Guan, Z. (2013), "Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets", Compos. Part B: Eng. 44(1), 604-612. https://doi.org/10.1016/j.compositesb.2012.02.018.
  38. El-Mihilmy, M.T. and Tedesco, J.W. (2001), "Prediction of anchorage failure for reinforced concrete beams strengthened with fiber-reinforced polymer plates", Struct. J., 98(3), 301-314.
  39. Erkan, I.H., Aksoylu, C., Alshlash, S. and Arslan, M.H. (2019). "Repair / Strengthening Of Pre-Damed Shear Beams With Steel Plates", Proceedings of the International Aluminium-Themed Engineering and Natural Sciences Conference, Seydisehir, Turkey, October.
  40. Gao, B., Leung, C.K.Y. and Kim, J.-K. (2007), "Failure diagrams of FRP strengthened RC beams", Compos. Struct., 77(4), 493-508. https://doi.org/10.1016/j.compstruct.2005.08.003.
  41. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019a), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  42. Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes", Composite Structures. 187 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049.
  43. Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019b), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023.
  44. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2020), "Celik, Cam FRP ve Hibrit Donatili Betonarme Kirislerin Egilme Performansinin Incelenmesi", Duzce universitesi Bilim ve Teknoloji Dergisi. 8(2), 1470-1483.
  45. Grace, N.F., Ragheb, W.F. and Abdel-Sayed, G. (2003), "Flexural and shear strengthening of concrete beams using new triaxially braided ductile fabric", Struct. J., 100(6), 804-814.
  46. Ghobarah, A., Tarek, S.A. and Ashraf, B. (1997), "Rehabilitation of Reinforced Concrete Frame Connections Using Corrugated Steel Jacketing", ACI Struct. J., 94(3). https://doi.org/10.14359/480.
  47. Hadi, M.N., Almalome, M.H., Yu, T. and Rickards, W.A. (2020), "Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating", Steel Compos. Struct., 34(1), 17-34. http://dx.doi.org/10.12989/scs.2020.34.1.017.
  48. Hadi, M.N.S. (2003), "Retrofitting of shear failed reinforced concrete beams", Compos. Struct., 62(1), 1-6. https://doi.org/10.1016/S0263-8223(03)00078-3.
  49. Halahla, A.M., Rahman, M.K., Al-Gadhib, A.H., Al-Osta, M.A. and Baluch, M.H. (2019), "Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric", Earthq. Struct., 17(4), 337-354. https://doi.org/10.12989/eas.2019.17.4.337.
  50. Hamoush, S. and Ahmad, S. (1997), "Concrete crack repair by stitches", Mater. Struct., 30(7), 418-423. https://doi.org/10.1007/BF02498565
  51. Hamoush, S.A. and Ahmad, S. (1990), "Debonding of steel platestrengthened concrete beams", J. Struct. Eng., 116(2), 356-371. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(356)
  52. Hawileh, R.A., Rasheed, H.A., Abdalla, J.A. and Al-Tamimi, A.K. (2014), "Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems", Mater. Design, 53, 972-982. https://doi.org/10.1016/j.matdes.2013.07.087.
  53. Huang, L., Yan, B., Yan, L., Xu, Q., Tan, H. and Kasal, B. (2016), "Reinforced concrete beams strengthened with externally bonded natural flax FRP plates", Compos. Part B: Eng., 91, 569-578. https://doi.org/10.1016/j.compositesb.2016.02.014.
  54. Hussain, M., Sharif, A., Baluch, I.B.M. and Al-Sulaimani, G. (1995), "Flexural behavior of precracked reinforced concrete beams strengthened externally by steel plates", Struct. J., 92(1), 14-23.
  55. Jasim, W.A., Tahnat, Y.B.A. and Halahla, A.M. (2020), "Behavior of reinforced concrete deep beam with web openings strengthened with (CFRP) sheet", Structures, 26, 785-800. https://doi.org/10.1016/j.istruc.2020.05.003.
  56. Jones, R., Swamy, R. and Charif, A. (1988), "Plate separation and anchorage of reinforced concrete beams strengthened by epoxybonded steel plates", Struct. Engineer, 66(5), 85-94.
  57. Kara, I.F, Ashour, A.F. and Koroglu, M.A. (2015), "Flexural behavior of hybrid FRP/steel reinforced concrete beams", Compos. Part B., 91, 371-383. https://doi.org/10.1016/j.compstruct.2015.03.073.
  58. Kara, I.F, Ashour, A.F. and Koroglu, M.A. (2016), "Flexural performance of reinforced concrete beams strengthened with prestressed near-surface-mounted FRP reinforcements", Compos. Struct., 129, 111-121. https://doi.org/10.1016/j.compositesb.2016.01.023.
  59. Kara, I.F, Koroglu, M.A. and Ashour, A.F. (2017), "Tests of continuous concrete slabs reinforced with basalt fibre reinforced plastic bars", ACI Struct. J., 114(5) 1201-1213. https://doi.org/10.14359/51689784
  60. Li, L., Guo, Y., Liu, F. and Bungey, J. (2005). "Efficiency of hybrid FRP sheets in strengthening concrete beams", Repair and Renovation of Concrete Structures: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5-6 My 2005.
  61. Li, L., Guo, Y. and Liu, F. (2008), "Test analysis for FRC beams strengthened with externally bonded FRP sheets", Constr. Build. Mater., 22(3), 315-323. https://doi.org/10.1016/j.conbuildmat.2006.08.016.
  62. Ma, S., Bunnori, N.M., Choong, K.K. and Zhao, R. (2019), "Models Reviewed for Predicting CFRP Shear Contribution of Strengthened Reinforced Concrete Box Beam", KSCE J. Civil Eng., 23(8), 3644-3659. https://doi.org/10.1007/s12205-019-1850-z.
  63. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254(112806). https://doi.org/10.1016/j.compstruct.2020.112806.
  64. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  65. Madenci, E., Ozkilic, Y.O. and Lokman, G. (2020c), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi, 8(3), 483-490.
  66. Manos, G.C., Theofanous, M. and Katakalos, K. (2014), "Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement", Adv. Eng. Softw., 67, 47-56. https://doi.org/10.1016/j.advengsoft.2013.08.001.
  67. Mehany, S., Mohamed, H.M. and Benmokrane, B. (2021), Contribution of lightweight self-consolidated concrete (LWSCC) to shear strength of beams reinforced with basalt FRP bars. Eng. Struct., 231, 111758. https://doi.org/10.1016/j.engstruct.2020.111758.
  68. Mugahed Amran, Y.H., Alyousef, R., Rashid, R.S.M., Alabduljabbar, H. and Hung, C.C. (2018), "Properties and applications of FRP in strengthening RC structures: A review", Structures, 16, 208-238. https://doi.org/10.1016/j.istruc.2018.09.008.
  69. Musevitoglu, A., Arslan, M.H., Aksoylu, C. and Ozkis, A. (2020), "Experimental and analytical investigation of chemical anchors's behaviour under axial tensile", Measurement, 158, 107689. https://doi.org/10.1016/j.measurement.2020.107689.
  70. Naderpour, H. and Alavi, S.A. (2017), "A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System", Compos. Struct., 170, 215-227. https://doi.org/10.1016/j.compstruct.2017.03.028.
  71. Nikopour, H. and Nehdi, M. (2011), "Shear repair of RC beams using epoxy injection and hybrid external FRP", Mater. Struct., 44(10), 1865-1877. https://doi.org/10.1617/s11527-011-9743-8.
  72. Noel, M. and Soudki, K. (2011), "Evaluation of FRP posttensioned slab bridge strips using AASHTO-LRFD bridge design specifications", J. Bridge Eng., 16(6), 839-846. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000226.
  73. Oehlers, D., Ali, M.M. and Luo, W. (1998), "Upgrading continuous reinforced concrete beams by gluing steel plates to their tension faces", J. Struct. Eng., 124(3), 224-232. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(224)
  74. Oehlers, D.J. (1992), "Reinforced concrete beams with plates glued to their soffits", J. Struct. Eng., 118(8), 2023-2038. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2023)
  75. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021a), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  76. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng. (TUJE). 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
  77. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021b), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  78. Ozkilic, Y. O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  79. Ozkilic, Y.O. (2021a), "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beam-to-column connections", Res. Eng. Struct. Mater., http://dx.doi.org/10.17515/resm2021.275st0315.
  80. Ozkilic, Y.O. (2021b), "Optimized stiffener detailing for shear links in eccentrically braced frames", Steel Compos. Struct., 39(1), 35-50. https://doi.org/10.12989/scs.2021.39.1.035.
  81. Padmarajaiah, S. and Ramaswamy, A. (2002), "A finite element assessment of flexural strength of prestressed concrete beams with fiber reinforcement", Cement Concrete Compos., 24(2), 229-241. https://doi.org/10.1016/S0958-9465(01)00040-3.
  82. Panda, K., Bhattacharyya, S. and Barai, S. (2012), "Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149.
  83. Panda, K., Bhattacharyya, S. and Barai, S. (2013), "Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams", Struct. Eng. Mech., 47(1), 75-98. http://dx.doi.org/10.12989/sem.2013.47.1.075.
  84. Perera, R., Arteaga, A. and Diego, A.D. (2010a), "Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement", Compos. Struct., 92(5), 1169-1175. https://doi.org/10.1016/j.compstruct.2009.10.027.
  85. Perera, R., Barchin, M., Arteaga, A. and Diego, A.D. (2010b), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B: Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003.
  86. Pham, T.M., Doan, L.V. and Hadi, M.N.S. (2013), "Strengthening square reinforced concrete columns by circularisation and FRP confinement", Constr. Build. Mater., 49, 490-499. https://doi.org/10.1016/j.conbuildmat.2013.08.082.
  87. Pham, T.M. and Hao, H. (2016), "Review of Concrete Structures Strengthened with FRP Against Impact Loading", Structures, 7, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003.
  88. Rahimi, H. and Hutchinson, A. (2001), "Concrete beams strengthened with externally bonded FRP plates", J. Compos. Constr., 5(1), 44-56. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44).
  89. Saadatmanesh, H. and Ehsani, M.R. (1991), "RC beams strengthened with GFRP plates. I: Experimental study", J. Struct. Eng., 117(11), 3417-3433. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3417)
  90. Sen, T. and Jagannatha Reddy, H.N. (2013), "Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems", Int. J. Sust. Built Environ., 2(1), 41-55. https://doi.org/10.1016/j.ijsbe.2013.11.001.
  91. Shalaby, H.A., Hassan, M.M. and Safar, S.S. (2019), "Parametric study of shear strength of CFRP strengthened end-web panels", Steel Compos. Struct., 31(2), 159-172. http://dx.doi.org/10.12989/scs.2019.31.2.159.
  92. Sim, J. and Park, C. (2005), "Characteristics of basalt fiber as a strengthening material for concrete structures", Compos. Part B: Eng., 36(6-7), 504-512. https://doi.org/10.1016/j.compositesb.2005.02.002.
  93. Smith, S.T. and Teng, J.G. (2002), "FRP-strengthened RC beams. I: review of debonding strength models", Eng. Struct., 24(4), 385- 395. https://doi.org/10.1016/S0141-0296(01)00105-5.
  94. Spadea, G., Bencardino, F., Sorrenti, F. and Swamy, R.N. (2015), "Structural effectiveness of FRP materials in strengthening RC beams", Eng. Struct., 99, 631-641. https://doi.org/10.1016/j.engstruct.2015.05.021.
  95. Swamy, R., Jones, R. and Bloxham, J. (1987), "Structural behaviour of reinforced concrete beams strengthened by epoxy bonded steel plates", Struct. Engineer (London. 1924), 65(2), 59-68.
  96. Taljsten, B. (2003), "Strengthening concrete beams for shear with CFRP sheets", Constr. Build. Mater., 17(1), 15-26. https://doi.org/10.1016/S0950-0618(02)00088-0.
  97. Taljsten, B. and Elfgren, L. (2000), "Strengthening concrete beams for shear using CFRP-materials: evaluation of different application methods", Compos. Part B: Eng., 31(2), 87-96. https://doi.org/10.1016/S1359-8368(99)00077-3.
  98. Tong, Z., Song, X. and Huang, Q. (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. http://dx.doi.org/10.12989/scs.2018.26.5.595.
  99. Triantafillou, T.C. and Plevris, N. (1992), "Strengthening of RC beams with epoxy-bonded fibre-composite materials", Mater. Struct., 25(4), 201-211. http://dx.doi.org/10.1007/BF02473064.
  100. Tsonos, A.G. (2008), "Effectiveness of CFRP-jackets and RCjackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages", Eng. Struct., 30(3), 777-793. https://doi.org/10.1016/j.engstruct.2007.05.008.s
  101. Wan, S.-c., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-35. http://dx.doi.org/10.12989/scs.2019.32.1.021.
  102. Yao, J., Teng, J.G. and Chen, J.F. (2005), "Experimental study on FRP-to-concrete bonded joints", Compos. Part B: Eng., 36(2), 99-113. https://doi.org/10.1016/j.compositesb.2004.06.001.
  103. Ziraba, Y., Baluch, M., Basunbul, I., Sharif, A., Azad, A. and Al-Sulaimani, G. (1994), "Guidelines toward the design of reinforced concrete (RC) beams with external plates", Struct. J., 91(6),639-646.

피인용 문헌

  1. Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.309