References
- Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1984), Boundary Element Techniques - Theory and Applications in Engineering, Springer, Heidelberg
- Chen, J.T. and Lee, Y.T. (2009), "Torsional rigidity of a circular bar with multiple circular inclusions using the null-field integral approach", Comput. Mech., 44, 221-232. https://doi.org/10.1007/s00466-009-0365-8.
- Chen, J.T. and Wu, A.C. (2007), "Null-field approach for the multi-inclusion problem under antiplane shears", J. Appl. Mech., 74, 469-487. https://doi.org/10.1115/1.2338056.
- Chen, J.T., Kuo, S.R. and Lin, J.H. (2002), "Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity", Int. J. Numer. Meth. Eng., 54, 1669-1681. https://doi.org/10.1002/nme.476.
- Chen, Y.Z. (2012a), "Boundary integral equation method for two dissimilar elastic inclusions in an infinite plate", Eng. Anal. Bound. Elem., 36(2), 137-146. https://doi.org/10.1016/j.enganabound.2011.07.006.
- Chen, Y.Z. (2012b), "An iteration approach for multiple notch problem based on complex variable boundary integral equation", Struct. Eng. Mech., 41(5), 591-604. http://dx.doi.org/10.12989/sem.2012.41.5.591.
- Chen, Y.Z. and Wang, Z.X. (2013), "Properties of integral operators in complex variable boundary integral equation in plane elasticity", Struct. Eng. Mech., 45(4), 495-519. http://dx.doi.org/10.12989/sem.2013.45.4.495.
- Chen, Y.Z., Lin, X.Y. and Wang, Z.X. (2010), "Formulation of indirect BIEs in plane elasticity using single or double layer potentials and complex variable"; Eng. Anal. Bound. Elem., 34, 337-351. https://doi.org/10.1016/j.enganabound.2009.10.009.
- Cheng, A.H.D. and Cheng, D.S. (2005), "Heritage and early history of the boundary element method", Eng. Anal. Bound. Elem., 29(3), 286-302. https://doi.org/10.1016/j.enganabound.2004.12.001.
- Cruse, T.A. (1969), "Numerical solutions in three-dimensional elastostatics", Int. J. Solids Struct., 5(12), 1259-1274. https://doi.org/10.1016/0020-7683(69)90071-7.
- Hildebrand, F.B. (1974), Introduction to numerical analysis, McGraw-Hill, New York.
- Hong, H.K. and Chen, J.T. (1988), "Derivations of integral equations of elasticity", J. Eng. Mech., 114(6), 1028-1044. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:6(1028).
- Jaswon, M.A. and Symm, G.T. (1977), Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London.
- Liu, Y.J. and Rudolphi, T.J. (1999), "New identities for fundamental solutions and their applications to nosingular boundary element formulation", Comput. Mech., 24, 286-292. https://doi.org/10.1007/s004660050517
- Liu, Y.J., Ye, W. and Deng, Y. (2013), "On the identities for electrostatic fundamental solution and nonuniqueness of the traction BIE solution for multiconnected domains", J. Appl. Mech., 80(5), 051012-1 to -9. https://doi.org/10.1115/1.4023640.
- Muskhelishvili, N.I. (1953), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, The Netherlands.
- Rizzo, F.J. (1967), "An integral equation approach to boundary value problems in classical elastostatics", Quart. J. Appl. Math., 25, 83-95. https://doi.org/10.1090/qam/99907
- Vodicka, R. and Mantic, V. (2008), "On solvability of a boundary integral equation of the first kind for Dirichlet boundary value problems in plane elasticity", Comput. Mech., 41(6), 817-826. https://doi.org/10.1007/s00466-007-0202-x.
- Zhang, X.S. and Zhang X.X. (2008), "Exact solution for the hypersingular boundary integral equation of two-dimensional elastostaticcs", Struct. Eng. Mech., 30(3), 279-296. https://doi.org/10.12989/sem.2008.30.3.279