DOI QR코드

DOI QR Code

Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods

  • Hussain, Ajmal (Department of Civil Engineering, Zakir Hussain College of Engineering & Technology, Aligarh Muslim University) ;
  • Shariq, Ali (Department of Civil Engineering, Zakir Hussain College of Engineering & Technology, Aligarh Muslim University) ;
  • Danish, Mohd (Civil Engineering Section, University Polytechnic, Aligarh Muslim University) ;
  • Ansari, Mujib A. (Department of Civil Engineering, Zakir Hussain College of Engineering & Technology, Aligarh Muslim University)
  • Received : 2020.06.18
  • Accepted : 2020.12.24
  • Published : 2021.04.25

Abstract

Flow through the rectangular side weir is a spatially varied type flow with decreasing discharge and used as a flow diversion structure. They are mainly used in the field of hydraulic, irrigation, and environmental engineering for diverting and controlling the flow of water in irrigation-drainage systems, drainage canal systems, and wastewater channels. In this study, gene expression programming and group method of data handling were used to estimate the coefficient of discharge for rectangular side weir under subcritical flow condition. Based on dimensional analysis, the coefficient of the discharge depends on the ratio of the crest height to length, ratio of the width of channel to crest length, ratio of the upstream depth in the channel to crest length and the approach Froude number. The performance of the proposed GMDH and GEP model is based on the coefficient of correlation (0.91), mean absolute percentage error (3.54), average absolute deviation (3.3), root mean square error (0.027) and the coefficient of correlation (0.905), mean absolute percentage error (4.12) average absolute deviation (3.9), root mean square error (0.029), respectively. Finally, the results reveal that GMDH model could provide more satisfactorily estimations as compared to those obtained by traditional regression and GEP models.

Keywords

References

  1. Ahmad, F., Ansari, M.A., Hussain, A. and Jahangeer, J. (2020), "Model development for estimation of sediment removal efficiency of settling basins using group methods of data handling", J. Irrigation Drainage Eng., 147(2), 04020043. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001532.
  2. Alam, J., Kim, D. and Choi, D. (2017), "Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula", Earthq. Struct., 4(13), 421-427. https://doi.org/10.12989/eas.2018.13.4.421.
  3. Alkroosh, I.S. and Sarker, P.K. (2019), "Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming", Comput. Concrete, 24(4), 295-302. https://doi.org/10.12989/cac.2019.24.4.295.
  4. Amanifard, N., Nariman-Zadeh, N., Farahani, M.H. and Khalkhali, A. (2008), "Modeling of multiple shortlength-scale stall cells in an axial compressor using evolved gmdh neural networks", J Energy Convers Manage, 49(10), 2588-2594. https://doi.org/10.1016/j.enconman.2008.05.025.
  5. Ansari, M.A. (2014), "Sediment removal efficiency computation in vortex settling chamber using artificial neural networks", Water Energy Int., 71(1), 54-67.
  6. Ansari, M.A. and Athar M. (2013), "Artificial neural networks approach for estimation of sediment removal efficiency of vortex settling basins", ISH J. Hydraulic Eng., 19(1), 38-48. doi:10.1080/09715010.2012.758415.
  7. Ansari, M.A., Ansari, S.A. and Alam, S. (2018), "Computation of scour depth below pipelines using artificial neural networks", Water Energy Int., 61(6), 55-62.
  8. Ansari, M.A., Hussain, A., Shariq, A. and Alam, F. (2019), "Experimental and numerical study for the estimation of coefficient of discharge for side compound weir", Canadian J. Civil Eng., 46(10), 887-895. https://doi.org/10.1139/cjce-2017-0689.
  9. Ayaz, M. and Mansoor, T. (2018), "Discharge coefficient of oblique sharp crested weir for free and submerged flow using trained ann model", Water Sci, 32(2), 192-212. https://doi.org/10.1016/j.wsj.2018.10.002.
  10. Azamathulla, H.M., Ghani, A.A., Leo, C.S., Chang, C.K. and Zakaria, N.A. (2011), "Gene-expression programming for the development of a stage-discharge curve of the pahang river", Water Resources Management, 25, 2901-2916. https://doi.org/10.1007/s11269-011-9845-7
  11. Azamathulla, H.M., Ghani, A.A., Zakaria, N.A. and Guven, A. (2010), "Genetic programming to predict bridge pier scour", J. Hydraulic Eng., 136(3),165-169. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000133.
  12. Azza, N. and Al-Talib, (2012), "Flow over oblique side weir", J. Damascus Univ., 28(1), 15-22.
  13. Bagheri, S., Kabiri-Samani, A.R. and Heidarpour, M. (2014), "Discharge coefficient of rectangular sharpcrested side weirs part i: traditional weir equation", Flow Measure. Instrumentation, 35, 109-115. https://doi.org/10.1016/j.flowmeasinst.2013.11.005.
  14. Borghei, S.M., Jalili, M.R. and Ghodsian, M., (1999), "Discharge coefficient for sharp-crested side weirs in subcritical flow", J. Hydraul Eng., 125(10), 1051-1056. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1051).
  15. Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
  16. Emiroglu, M.E., Agaccioglu, H. and Kaya, N. (2011), "Discharging capacity of rectangular side weirs in straight open channels", Flow Measure. Instrumentation, 22, 319-330. https://doi.org/10.1016/j.flowmeasinst.2011.04.003.
  17. F.J. Dominguez, (1999) Editorial Universitaria, Santiago, Chile, (in Spanish).
  18. Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", J. Complex Syst., 13(2), 87-129.
  19. Ferreira, C. (2006), "Gene expression programming; mathematical modelling by an artificial intelligence", Springer, Heidelberg.
  20. Ghodsian, M. (1997), "Elementary discharge coefficient for rectangular side weir", Proceeding of 4th Int. Conf. on Civil Engineering, Tehran.
  21. Hager, W.H. (1987), "Lateral outflow of side weirs", J. Hydraul. Eng., 113(4), 491-504. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(491).
  22. Hussain, A., Ahmad, Z. and Ojha, C.S.P. (2016), "Flow through lateral circular orifice under free and submerged flow conditions", Flow Measure. Instrumentation, 36(10), 32-35. https://doi.org/10.1016/j.flowmeasinst.2016.09.007.
  23. Hussain, S., Hussain, A. and Ahmad, Z. (2014), "Discharge characteristics of orifice spillway under oblique approach flow", Flow Measure. Instrumentation, 39, 9-18. https://doi.org/10.1016/j.flowmeasinst.2014.05.022.
  24. Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2018b), "Gmdh-based prediction of shear strength of frp-rc beams with and without stirrups", Comput. Concrete, 22(2), 197-207. https://doi.org/10.12989/cac.2018.22.2.197.
  25. Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2018a) "Soft computing-based slope stability assessment: A comparative study", Geomech. Eng., 14(3), 257-269. http://dx.doi.org/10.12989/gae.2018.14.3.257.
  26. Khorrami, R. and Derakhshani, A. (2019), "Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid m5\gp model", Geomech. Eng., 19(2), 127-139. https://doi.org/10.12989/gae.2019.19.2.127.
  27. Kose, M.M. and Kayadelen, C. (2010), "Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy", Struct. Eng. Mech., 47(3), 401-419. https://doi.org/10.12989/sem.2013.47.3.401.
  28. Li, S., Yu, S., Shangguan, Z. and Wang, Z. (2016), "Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements", Geomech. Eng., 10(1), 37-48. http://dx.doi.org/10.12989/gae.2016.10.1.037.
  29. Marchi, D. (1934), "G. Essay on the performance of lateral weirs", L Energia Electrica Milano, 11(11), 849-860.
  30. Mohammed, A.Y. and Golijanek-Jedrzejczyk, A. (2020), "Estimating the uncertainty of discharge coefficient predicted for oblique side weir using monte carlo method", Flow Measure. Instrumentation, 73(4),1-6. https://doi.org/10.1016/j.flowmeasinst.2020.101727.
  31. Mohammed, A.Y. and Sharifi, A. (2020), "Gene expression programming (gep) to predict coefficient of discharge for oblique side weir", Appl. Water Sci., 10, 145. https://doi.org/10.1007/s13201-020-01211-5.
  32. Mohammed, A.Y., Al-Talib, A.N. and Basheer, T.A. (2013), "Simulation of flow over the side weir using simulink. Scientiairanica", 20(4), 1094-1100.
  33. Najafzadeh, M., Barani, G.A. and Hessami Kermani, M.R. (2013), "Abutment scour in clear-water and livebed conditions by GMDH network", Water Sci. Technol., 67(5), 1121-1128. https://doi.org/10.2166/wst.2013.670.
  34. Ranga Raju, K.G., Prasad, B. and Gupta, S.K. (1979), "Side weirs in rectangular channels", J. Hydraul Div. 105(5) 547-554. https://doi.org/10.1061/JYCEAJ.0005207
  35. Rizvi, Z.H., Baqir Husain, S.M., Haider, H. and Wuttke, F. (2020), "Effective thermal conductivity of sands estimated by group method of data handling (gmdh), Proc. of Materials Today, 26(2), 2103-2107. https://doi.org/10.1016/j.matpr.2020.02.454
  36. Saridemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by gep", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.
  37. Shao, G., Jiang, L. and Chouw, N. (2014), "Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections", Earthq. Struct., 7(4), 463-484. https://doi.org/10.12989/eas.2014.7.4.463.
  38. Shariq, A. (2016), Flow characteristics of side weirs in open channel, Master's Thesis, Aligarh Muslim University, Aligarh, India.
  39. Shariq, A., Hussain, A. and Ahmad, Z. (2020), "Discharge equation for the gabion weir under through flow condition", Flow Measurement Instrumentation, 74, 101769. https://doi.org/10.1016/j.flowmeasinst.2020.101769
  40. Shariq, A., Hussain, A. and Ansari, M.A. (2018), "Lateral flow through the sharp crested side rectangular weirs in open channels", Flow Measure. Instrumentation, 59, 8-17. https://doi.org/10.1016/j.flowmeasinst.2017.11.007.
  41. Srinivasan, D. (2008), "Energy demand prediction using gmdh networks", Neuro Computing, 72(1-3), 625-629. https://doi.org/10.1016/j.neucom.2008.08.006.
  42. Subramanya, K. and Awasthy, S.C. (1972), "Spatially varied flow over side weirs", J. Hydraul Div. (ASCE), 98(1), 1-10. https://doi.org/10.1061/JYCEAJ.0003188.
  43. Vatankhah, A. (2012), "Analytical solution for water surface profile along a side weir in a triangular channel", Flow Measure. Instrument., 23(1), 76-79. https://doi.org/10.1016/j.flowmeasinst.2011.10.001.