DOI QR코드

DOI QR Code

Modeling and analysis of the imperfect FGM-damaged RC hybrid beams

  • Abderezak, Rabahi (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Daouadji, Tahar Hassaine (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Rabia, Benferhat (Laboratory of Geomatics and Sustainable Development, University of Tiaret)
  • Received : 2020.03.27
  • Accepted : 2021.01.04
  • Published : 2021.04.25

Abstract

The use of externally bonded composite materials for strengthening reinforced concrete structures has received considerable attention in recent years. Since, concrete is a relatively fragile material and will fail when subject to the influence of many factors whose origins can be mechanical, physicochemical and accidental or related to the design and miscalculations. The bonding of FRP plate to reinforced concrete structure, appeared in the middle of the fourtwenties years, proves to be a promising and fully justified technique. In this paper, an analysis and modeling of the concentrations of interfacial stresses in a damaged reinforced concrete beam strengthening in bending by an imperfect FGM plate, was presented, based on a development of a mathematical formulation taking into account the theory of beams. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the imperfect FGM - damaged RChybrid structures.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupled Syst. Mech., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473.
  3. Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Advan. Mater. Res., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257.
  4. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  5. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Advan. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  6. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  7. Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Advan. Mater. Res., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223.
  8. Adim, B., Daouadji, T.H. and Abbes, B. (2016a), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 126-141. https://doi.org/10.1007/s10778-016-0787-x.
  9. Adim, B., Daouadji, T.H. and Abbes, B. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Ind., 17, 512. https://doi.org/10.1051/meca/2015112.
  10. Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  11. Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  12. Amara K., Antar, K. and Samir B. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  13. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  14. Benferhat, R., Daouadji, T.H. and Adim, B. (2016b), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Advan. Mater. Res., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107.
  15. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  16. Benferhat, R., Hassaine Daouadji, T., Said Mansour, M. and Hadji L. (2016a), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  17. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech. 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  18. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018)., "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Advan. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.119.
  19. Bensattalah, T., Daouadji, T.H. and Zidour, M. (2020), "Influences the shape of the floor on the behavior of buildings under seismic effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, https://doi.org/10.1007/978-3-030-43268-3_3.
  20. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory" Advan. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  21. Benyoucef, S, Tounsi, A, Meftah, S.A. and Adda Bedia, E.A. (2007), "Approximate analysis of the interfacial stress concentrations in FRP-RC hybrid beams", Compos. Interfaces, 13(7), 561-571. https://doi.org/10.1163/156855406778440758.
  22. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Advan. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  23. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Advan. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  24. Chikr, S.C., Kaci, A., Yeghnem, R. and Tounsi, A. (2019), "A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates", Struct. Eng. Mech. 72(5), 653-673. https://doi.org/10.12989/sem.2019.72.5.653.
  25. Daouadji, T.H., Chedad, A. and Adim, B. (2016b), "Interfacial stresses in RC beam bonded with a functionally graded material plate", Struct. Eng. Mech., 60(4), 693-705. http://dx.doi.org/10.12989/sem.2016.60.4.693.
  26. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016a), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhesion Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  27. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  28. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061.
  29. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361.
  30. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Construct. Build. Mater., 249(20), 1-13. http://dx.doi.org/10.1016/j.conbuildmat.2020.118745.
  31. Hassaine Daouadji, T. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  32. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Advan. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  33. Hassaine Daouadji, T., Benyoucef, S. and Adda B. (2008), "Interfacial stresses concentrations in FRP - damaged RC hybrid beams", Compos. Interfaces, 15, 425-440. https://doi.org/10.1163/156855408784514702.
  34. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Maint., 7(3), 233-259. http://dx.doi.org/10.12989/smm.2020.7.3.233.
  35. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
  36. Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 9, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008
  37. Mahi, B.E., Benrahou, K.H., Belakhdar, K., Tounsi, A. and Bedia, E.A. (2014), "Effect of the tapered of the end of a FRP plate on the interfacial stresses in a strengthened beam used in civil engineering applications", Mech. Compos. Mater., 50(4), 465-474. https://doi.org/10.1007/s11029-014-9433-z.
  38. Mazars, J. and Pijaudier-Cabot, G. (1996), "From damage to fracture mechanics and conversely: A combined approach", Int. J. Solids Struct., 33(20), 3327-3342. https://doi.org/10.1016/0020-7683(96)00015-7.
  39. Mohammadimehr, M., Hooyeh, H.M., Afshari, H. and Salarkia, M.R. (2017), "Free vibration analysis of double bonded isotropic piezoelectric Timoshenko micro-beam based on strain gradient and surface stress elasticity theories under initial stress using DQM", Mech. Advan. Mater. Struct., 24(4), 287-303. https://doi.org/10.1080/15376494.2016.1142022.
  40. Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018), "Surf ace and size dependent effects on static, buckling, and vibration of micro composite beam under thermomagnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513.
  41. Panjehpour Mohammad, Abang Abdullah Abang Ali,Yen Lei Voo and Farah Nora Aznieta (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, 13(1), 135-165 https://doi.org/10.12989/cac.2014.13.1.135.
  42. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  43. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinforced Plastics Compos., 35(3) 258-272. https://doi.org/10.1177/0731684415613633.
  44. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Advan. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  45. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(50), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  46. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  47. Rabia, B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Advan. Mater. Res., 9(4), 265-287. http://dx.doi.org/10.12989/amr.2020.9.4.265.
  48. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Syst. Mech., 9(6), 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499.
  49. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://dx.doi.org/10.1016/S0141-0296(00)00090-0.
  50. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fiber reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  51. Tahar, H.D., Lazreg, H., Mohamed A.A.M. and Hadj, B. (2016), "Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates", Struct. Eng. Mech., 59(1), 83-100. https://doi.org/10.12989/sem.2016.59.1.083.
  52. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Advan. Mater. Res., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133.
  53. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Advan. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  54. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://dx.doi.org/10.12989/sem.2021.77.2.217
  55. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43, 14-15, 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  56. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  57. Yang, J. and Wu, Y.F. (2007), "Interfacial stresses of FRP strengthened concrete beams: Effect of shear deformation", Compos. Struct., 80(2007), 343-351. https://doi.org/10.1016/j.compstruct.2006.05.016.

Cited by

  1. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2021, https://doi.org/10.12989/sem.2021.79.5.531
  2. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2021, https://doi.org/10.12989/amr.2021.10.3.169