DOI QR코드

DOI QR Code

Simulation and Analysis of Response Plans against Chemical and Biological Hazards

화학 생물 위험 대응 시뮬레이션 및 분석

  • Received : 2021.04.26
  • Accepted : 2021.06.10
  • Published : 2021.06.30

Abstract

M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

화학·생물(화생) 위험을 초기 단계에 효과적으로 대응하기 위해서는 화생 대응 계획을 체계적으로 발전시켜야 하며, 모델링 및 시뮬레이션은 이를 위한 과학적 수단으로 활용될 수 있다. 그러나 오염 확산 모델링 분야는 많은 발전을 이루고 있으나, 화생 대응 계획을 모의하고 적절성을 분석하는 시뮬레이션 분야는 여전히 초기 단계에 머무르고 있다. 이에 본 논문에서는 화생 오염 탐지, 보호, 제독 등 대응 계획을 과학적으로 모의하기 위한 모델을 제안한다. 먼저 기상 및 지형 조건을 고려하여 예측된 오염 확산 결과를 교전 모델에 반영하는 방법을 제시한다. 이어서 공개된 사상자 예측 기법을 기반으로 전투 모의 개체의 화생 피해를 모의하는 화생 전투 피해 모의 기법을 설계한다. 그리고 화생 위험 탐지·정찰, 제독, 보호 등 화생 위험 대응 계획을 체계적으로 모의하는 과업을 모델링한다. 끝으로 화생 감시소 운용에 의한 오염 탐지의 신속성을 분석하는 한편, 화생 제독소 운용 시 오염 부대 규모와 제독 부대 규모에 따른 제독 소요 시간을 분석함으로써 화생 전투 모의 실험의 가능성을 확인한다. 제안된 모델을 이용하면 향후 군의 화생 방호 체계 및 운용개념에 대한 효과 분석은 물론 재난 방재 및 모의 훈련 분야에서도 일부 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Boris, J. Fulton Jr, J. E., Obenschain, K. Patnaik, G., and Young Jr, T., "CT-Analyst: fast and accurate CBR emergency assessment," Chemical and Biological Sensing V, SPIE 5416, pp. 1-13, 2004.
  2. Bruhn NewTech, "Product Overview Fact Sheet", Available via: https://bruhn-newtech.com/wp-content/ uploads/2018/08/bruhn-newtech-product-overview. pdf, 2018.
  3. Cha, J., Kang, T., Kim, D., and Lee, H., "Study on Police-led National Response against CBRN Terror by Strengthening the Standing Cooperation System of the Interagencies", Korean Security Journal, No. 59, pp. 217-242, 2019. https://doi.org/10.36623/kssa.2019.59.9
  4. Chang, J. C., Hanna, S. R., Boybeyi, Z., and Franzese P., "Use of Salt Lake City URBAN 2000 field data to evaluate the urban hazard prediction assessment capability (HPAC) dispersion model", Journal of Applied Meteorology, Vol. 44, No. 4, pp. 485-501, 2005. https://doi.org/10.1175/JAM2205.1
  5. Foken, T., "50 years of the Monin-Obukhov similarity theory", Boundary-Layer Meteorology, Vol. 119, No. 3, pp. 431-447, 2006. https://doi.org/10.1007/s10546-006-9048-6
  6. Han, S., Pyun, J, Shim, W., and Jung, H., "Design of a HLA/RTI-based Federation Architecture Between OneSAF and NBC Contamination Prediction Models", Journal of the KIMST, Vol. 18, No. 5, pp. 582- 593, 2015.
  7. NATO, "Warning and Reporting and Hazard Prediction of Chemical, Biological, Radiological and Nuclear Incidents (Operators Manual)," 2020.
  8. Kwak, S. D., and Eugene L. B., "JOEF (Joint Operational Effects Federation) Architecture", MITRE Technical Paper, The Mitre Corp., Bedford, MA, USA, 2003.
  9. Lloyd, J., Newton, N., and Perkins, R., "A Chemical, Biological and Radiological Modelling Capability to Support Acquisition Advice and Re-use as a Common Cross-Domain Capability", NATO STOMP-MSG-126, pp. 1-10, 2014.
  10. Obenschain K. and Moses A., "HPC Enhancement of Plume Modeling for Use by Military Simulators", DoD High Performance Computing Modernization Program Users Group Conference, Pittsburge, PA, USA, pp. 48-51, 2007.
  11. Oxford, S. M. LaViolet, L. L., Bishop, K. A., Burr, J. K., Curling, C. A., Danakian, et al., "Technical Reference Manual NATO Planning Guide for the Estimation of CBRN Casualties", NATO STD AMedP-7.5-1, 2018.
  12. Pullen, J., Boris, J. P., Young, T., Patnaik, G., and Iselin, J., "A comparison of contaminant plume statistics from a Gaussian puff and urban CFD model for two large cities", Atmospheric Environment, Vol. 39, No. 6, pp. 1049-1068, 2005. https://doi.org/10.1016/j.atmosenv.2004.10.043
  13. Robins, P., and Thomas, P., "Non-linear Bayesian CBRN source term estimation", Proc. of IEEE 7-th International Conference on Information Fusion, pp. 1101-1108, 2005.
  14. Smith, T. R., "Joint Effects Model (JEM) Briefing to CBIS, Joint Project Manager Information Systems", Available via: http://www.dtic.mil/ndia/2005st_cbis/ tuesday/smith.pdf, 2005.
  15. Thomas, J., "Nuclear, Biological, Chemical (NBC) Contamination", OneSAF Physical Knowledge Acquisition Document, AMSAA, USA, 2004.
  16. Thykier-Nielsen, S., Deme, S., and Mikkelsen, T., "Description of the atmospheric dispersion module RIMPUFF", Riso National Laboratory, 1999.
  17. Wittman, R., and Harrison, C., "OneSAF: A product line approach to simulation development", The MITRE Corporation, USA, 2001.