Acknowledgement
This work is supported by the Fundamental Research Funds for the Central Universities (FRF-GF-19-009B) and University of Science and Technology Beijing. Useful discussions with Professor Zhongjun Yin at the University of Science and Technology Beijing, is also gratefully acknowledged.
References
- Ab Rahman, M.F., Kok, S.L., Ali, N.M., Hamzah, R.A. and Aziz, K.A.A. (2013), "Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism", Proceedings of 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, November, pp. 243-247. https://doi.org/10.1109/CEAT.2013.6775634
- Lu, L.-H., Nakagawa, R., Kashio, Y., Ito, A., Shoji, H., Nishi, N., Hirashima, M., Yamauchi, A. and Nakamura, T. (1996), "Dynamical systems and numerical analysis", IEEE Computat. Sci. Eng., 4(2), 86-87. https://doi.org/10.1109/MCSE.1997.609839
- Ali, S.F., Friswell, M.I. and Adhikari, S. (2010), "Piezoelectric energy harvesting with parametric uncertainty", Smart Mater. Struct., 19(10), 105010-105019. https://doi.org/10.1088/0964-1726/19/10/105010
- Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Measure. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/r01.
- Bennet, A.G. (1968), Electricity and Modern Physics, London: Edward Arnold, London, UK.
- Cannarella, J., Selvaggi, J., Salon, S., Tichy, J. and Borca-Tasciuc, D.A. (2011), "Coupling factor between the magnetic and mechanical energy domains in electromagnetic power harvesting applications", IEEE Transact. Magnet., 47(8), 2076-2080. https://doi.org/10.1109/TMAG.2011.2122265
- Challa, V.R., Prasad, M.G., Shi, Y. and Fisher, F.T. (1996), "A vibration energy harvesting device with bidirectional resonance frequency tenability", Smart Mater. Struct., 17(1), 15035-15010. https://doi.org/10.1088/0964-1726/17/01/015035
- Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust.-Transact. ASME, 130(4). https://doi.org/041002-041017.10.1115/1.2890402
- Erturk, A., Hoffmann, J. and Inman, D.J. (2009), "A piezomagnetoelastic structure for broadband vibration energy harvesting", Appl. Phys. Lett., 94(25), 254102-254105. https://doi.org/10.1063/1.3159815
- Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration powered generator for intelligent sensor systems", Sensors Actuat. A: Phys., 110(1), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
- Hannan, M.A., Mutashar, S., Samad, S.A. and Hussain, A. (2014), "Energy harvesting for the implantable biomedical devices: issues and challenges", BioMed. Eng. Online, 13(1), 79-102. https://doi.org/10.1186/1475-925X-13-79
- Huang, S.C. and Lin, K.A. (2012), "A novel design of a map-tuning piezoelectric vibration energy harvester", Smart Mater. Struct., 21(8), 085014-085024. https://doi.org/10.1088/0964-1726/21/8/085014
- Jaber, N., Ramini, A., Hennawi, Q. and Younis, M.I. (2016), "Wideband MEMS resonator using multifrequency excitation", Sensors Actuat A: Phys., 106(2015), 140-145. https://doi.org/10.1016/j.sna.2016.02.030
- Kumar, K.A., Ali, S.F. and Arockiarajan, A. (2015), "Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization", Eur. Phys. J. Special Topics, 224(14-15), 2803-2822. https://doi.org/10.1140/epjst/e2015-02590-8
- Leng, Y., Tan, D., Liu, J., Zhang, Y. and Fan, S. (2017), "Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation", J. Sound Vib., 406, 146-160. https://doi.org/10.1016/j.jsv.2017.06.020
- Liu, H., Qian, Y. and Lee, C. (2013), "A multi-frequency vibration-based mems electromagnetic energy harvesting device", Sensors Actuat. A: Phys., 204(24), 37-43. https://doi.org/10.1016/j.sna.2013.09.015
- Mann, B.P. and Sims, N.D. (2009), "Energy harvesting from the nonlinear oscillations of magnetic levitation", J. Sound Vib., 319(1-2), 515-530. https://doi.org/10.1016/j.jsv.2008.06.011
- Matiko, J.W., Grabham, N.J., Beeby, S.P. and Tudor, M.J. (2013), "Review of the application of energy harvesting in buildings", Measure. Sci. Technol., 25(1), 012002-012027. https://doi.org/10.1088/0957-0233/25/1/012002
- Mutashar, S., Hannan, M.A., Samad, S.A. and Hussain, A. (2013), "Efficient low-power recovery circuits for bio-implanted micro-sensors", Przeglad zachodni. 89(5), 15-18.
- Rajarathinam, M. and Ali, S.F. (2018), "Energy generation in a hybrid harvester under harmonic excitation", Energy Convers. Manage., 155, 10-19. https://doi.org/10.1016/j.enconman.2017.10.054
- Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
- Sari, I., Balkan, T. and Kulah, H. (2008), "An electromagnetic micro power generator for wideband environmental vibrations", Sensors Actuat. A: Phys., 145, 405-413. https://doi.org/10.1016/j.sna.2007.11.021
- Shen, W., Chen, D., Li, L. and Tao, M. (2015), "Modeling and simulation of vibration energy harvester with piezomagnetoelastic beam array", Proceedings of 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, May, pp. 303-307. https://doi.org/10.1109/CSCWD.2015.7230976
- Siddique, A.R.M., Mahmud, S. and Van Heyst, B. (2015), "A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms", Energy Convers. Manage., 106, 728-747. https://doi.org/10.1016/j.enconman.2015.09.071
- Tao, K., Ding, G.F., Wang, P.H., Liu, Q.F. and Yang, Z.Q. (2011), "Design and Simulation of Fully Integrated Micro Electromagnetic Vibration Energy Harvester", Appl. Mech. Mater, 152, 1087-1090. https://doi.org/10.4028/www.scientific.net/amm.152-154.1087
- Varoto, P.S. and Mineto, A.T. (2014), "Nonlinear Dynamic Behavior of Cantilever Piezoelectric Energy Harvesters: Numerical and Experimental Investigation", In: Structural Health Monitoring, Proceedings of the Society for Experimental Mechanics Series, Bethel, CT, USA.
- Wang, X. (2016), Frequency Analysis of Vibration Energy Harvesting Systems, Elsevier, London, UK.
- Wang, X. and Xiao, H. (2013). "Dimensionless analysis and optimization of piezoelectric vibration energy harvester", Int. Review Mech. Eng., 7(4), 607-624.
- Weaver Jr, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering, John Wiley & Sons, 208(5014), 417-432. https://doi.org/10.1038/208964b0
- Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P. and Feng, H. (2009), "Electromagnetic energy harvesting from vibrations of multiple frequencies", J. Micromech. Microeng., 19(3), 035001. https://doi.org/035001-035009.10.1088/0960-1317/19/3/035001
- Zhao, S. and Erturk, A. (2009), "On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system", Appl. Phys. Lett., 102(10), 1867-1897. https://doi.org/1867-1897.10.1063/1.4795296
- Zhao, S. and Erturk, A. (2013), "Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs", Smart Mater Struct., 22(1), 015002-015016. https://doi.org/10.1088/0964-1726/22/1/015002
- Zhou, W., Penamalli, G.R. and Zuo, L. (2011), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014-015023. https://doi.org/10.1088/0964-1726/21/1/015014
- Zhou, S., Cao, J., Inman, D.J., Lin, J. and Li, D. (2016), "Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement", 373, 223-235. https://doi.org/10.1016/j.jsv.2016.03.017