DOI QR코드

DOI QR Code

Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network

  • Nguyen-Ngoc, L. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications) ;
  • Tran-Ngoc, H. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications) ;
  • Bui-Tien, T. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications) ;
  • Mai-Duc, A. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications) ;
  • Abdel Wahab, M. (Institute of Research and Development, Duy Tan University) ;
  • Nguyen, Huan X. (London Digital Twin Research Centre, Faculty of Science and Technology, Middlesex University) ;
  • De Roeck, G. (Department of Civil Engineering, KU Leuven)
  • 투고 : 2019.11.18
  • 심사 : 2021.03.24
  • 발행 : 2021.07.25

초록

In this paper, a novel approach to damage identification in structures using Particle Swarm Optimization (PSO) combined with Artificial neural network (ANN) is proposed. With recent substantial advances, ANN has been extensively utilized in a wide variety of fields. However, because of the application of backpropagation algorithms based on gradient descent techniques, ANN may be trapped in local minima when seeking the best solution. This may reduce the accuracy of ANN. Therefore, we propose employing an evolutionary algorithm, namely PSO to deal with the local minimum problems of ANN. PSO is employed to improve the training parameters of ANN consisting of weight and bias ratios by reducing the deviation between calculated and desired results. These training parameters are then used to train the network. Since PSO applies global search techniques to look for the best solution, it can assist the network in avoiding local minima by looking for a beneficial starting point. In order to assess the effectiveness of the proposed approach, both numerical and experimental models with different damage scenarios are employed. The results show that ANN -PSO not only significantly reduces computational time compared to PSO but also possibly identifies damages in the considered structures more accurately than ANN and PSO separately.

키워드

과제정보

The authors acknowledge the financial support of VLIRUOS TEAM Project, VN2018TEA479A103, "Damage assessment tools for Structural Health Monitoring of Vietnamese infrastructures", funded by the Flemish Government. This work is also supported by the Newton Fund Institutional Links through the U.K. Department of Business, Energy, and Industrial Strategy and managed by the British Council under Grant 429715093 and partly supported by the UK-India Education and Research Initiative (UKIERI) grant ID 'DST-UKIERI 2018-19-11'. Moreover, the author needs to acknowledge the financial supports from Ministry of Education and Training (MOET) under the project research B2018-GHA-04SP, University of Transport and Communications (UTC) under the project code T2019-CT-04TD, and Bijzonder Onderzoeksfonds (BOF) of Ghent University.

참고문헌

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
  2. Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
  3. Cuong, N.H. and Quang, N.D. (2020), "Experimental study on flexural behavior of prestressed and non-prestressed textile reinforced concrete plates". https://doi.org/10.25073/tcsj.71.1.5
  4. Dang, H.V., Tran-Ngoc, H., Nguyen, T.V., Bui-Tien, T., De Roeck, G. and Nguyen, H.X. (2020), "Data-driven structural health monitoring using feature fusion and hybrid deep learning", IEEE Transact. Automat. Sci. Eng. https://doi.org/10.1109/TASE.2020.3034401
  5. Dang, H.V., Raza, M., Tran-Ngoc, H., Bui-Tien, T. and Nguyen, H.X. (2021), "Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data", Struct. Eng. Mech., Int. J., 77(4), 495-508. https://doi.org/10.12989/sem.2021.77.4.495
  6. DjuriC, P.M. (1996), "A model selection rule for sinusoids in white Gaussian noise", IEEE Transact. Signal Process., 44(7), 1744-1751. https://doi.org/10.1109/78.510621
  7. Francois, S., Schevenels, M., Dooms, D., Jansen, M., Wambacq, J., Lombaert, G., Degrande, G. and De Roeck, G. (2021), "Stabil: An educational Matlab toolbox for static and dynamic structural analysis", Comput. Applicat. Eng. Edu. https://doi.org/10.1002/cae.22391
  8. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan. October. https://doi.org/10.1109/MHS.1995.494215
  9. Ghadimi, S. and Kourehli, S.S. (2017), "Multiple crack identification in Euler beams using extreme learning machine", KSCE J. Civil Eng., 21(1), 389-396. https://doi.org/10.1007/s12205-016-1078-0
  10. Ghannadi, P. and Kourehli, S.S. (2019a), "Data-driven method of damage detection using sparse sensors installation by SEREPa", J. Civil Struct. Health Monitor., 9(4), 459-475. https://doi.org/10.1007/s13349-019-00345-8
  11. Ghannadi, P. and Kourehli, S.S. (2019b), "Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm", Earthq. Struct., Int. J., 17(1), 63-73. https://doi.org/10.12989/eas.2019.17.1.063
  12. Ghannadi, P. and Kourehli, S.S. (2019c), "Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm", Struct. Eng. Mech., Int. J., 70(6), 649-659. https://doi.org/10.12989/sem.2019.70.6.649
  13. Hakim, S.J.S. and Razak, H.A. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., Int. J., 14(4), 367-377. https://doi.org/10.12989/scs.2013.14.4.367
  14. Hien, T.D. (2020), "A static analysis of nonuniform column by stochastic finite-element method using weighted integration approach", Transp. Commun. Sci. J., 70.
  15. Ho, V.L., Tran, N.H., De Roeck, G., Bui, T.T. and Wahab, M.A., (2018), "System identification based on vibration testing of a steel I-beam", Proceedings of International Conference on Numerical Modelling in Engineering (pp. 254-268), Springer, Singapore. https://doi.org/10.1007/978-981-13-2405-5_21
  16. Hoa, T.N., Khatir, S., De Roeck, G., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., Int. J., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487
  17. Hou, G., Xu, Z., Liu, X. and Jin, C. (2019), "Improved particle swarm optimization for selection of shield tunneling parameter values", Comput. Model. Eng. Sci., 118(2), 317-337. https://doi.org/10.31614/cmes.2019.04693
  18. Hwang, H. and Kim, C. (2004), "Damage detection in structures using a few frequency response measurements", J. Sound Vib., 270(1-2), 1-14. https://doi.org/10.1016/S0022-460X(03)00190-1
  19. Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R. and Van Hoecke, S. (2016), "Convolutional neural network based fault detection for rotating machinery", J. Sound Vib., 377, 331-345. https://doi.org/10.1016/j.jsv.2016.05.027
  20. Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., Int. J., 15(5), 1253-1270. http://doi.org/10.12989/sss.2015.15.5.1253
  21. Khatir, S. and Wahab, M.A. (2019a), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fract. Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032
  22. Khatir, S. and Wahab, M.A. (2019b), "A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm", Theor. Appl. Fract. Mech., 103, 102240. https://doi.org/10.1016/j.tafmec.2019.102240
  23. Khatir, S., Belaidi, I., Khatir, T., Hamrani, A., Zhou, Y.L. and Wahab, M.A. (2017), "Multiple damage detection in composite beams using Particle Swarm Optimization and Genetic Algorithm", Mechanics, 23(4), 514-521. https://doi.org/10.5755/j01.mech.23.4.15254
  24. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.tafmec.2019.102240
  25. Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T.N. and Abdel-Wahab, M. (2020a), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract. Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554
  26. Khatir, S., Khatir, T., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Bui, T.Q., Capozucca, R. and Abdel-Wahab, M. (2020b), "An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA", Smart Struct. Syst., Int. J., 25(5), 605-617. https://doi.org/10.12989/sss.2020.25.5.605
  27. Kourehli, S.S. (2017a), "Application of extreme learning machine to damage detection of plate-like structures", Int. J. Struct. Stabil. Dyn., 17(07), 1750068. https://doi.org/10.1142/S0219455417500687
  28. Kourehli, S.S. (2017b), "Structural damage diagnosis using incomplete static responses and LS-SVM", Inverse Problems Sci. Eng., 25(3), 418-433. https://doi.org/10.1080/17415977.2016.1169277
  29. Kourehli, S.S. (2018), "Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine", Struct. Monitor. Maint., Int. J., 5(3), 379-390. https://doi.org/10.12989/smm.2018.5.3.379
  30. Mai, B.T.T., Cuong, N.H., Quang, N.D. and Tai, D.H. (2020), "Experimental study on flexural and shear behaviour of sandwich panels using glass textile reinforced concrete and autoclaved aerated concrete", Transp. Commun. Sci. J., 71(1), 18-26. https://doi.org/10.25073/tcsj.71.1.3
  31. Maity, D. and Tripathy, R.R. (2005), "Damage assessment of structures from changes in natural frequencies using genetic algorithm", Struct. Eng. Mech., Int. J., 19(1), 21-42. https://doi.org/10.12989/sem.2005.19.1.021
  32. Mares, C. and Surace, C. (1996), "An application of genetic algorithms to identify damage in elastic structures", Journal of Sound and Vibration, 195(2), 195-215. https://doi.org/10.1006/jsvi.1996.0416
  33. Miguel, L.F.F., Lopez, R.H. and Miguel, L.F.F. (2013), "A hybrid approach for damage detection of structures under operational conditions", J. Sound Vib., 332(18), 4241-4260. https://doi.org/10.1016/j.jsv.2013.03.017
  34. Na, C., Kim, S.P. and Kwak, H.G. (2011), "Structural damage evaluation using genetic algorithm", J. Sound Vib., 330(12), 2772-2783. https://doi.org/10.1016/j.jsv.2011.01.007
  35. Nguyen, D.H., Tran-Ngoc, H., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge", Smart Struct. Syst., Int. J., 26(1), 35-47. https://doi.org/10.12989/sss.2020.26.1.035
  36. Samir, K., Brahim, B., Capozucca, R. and Wahab, M.A. (2018), "Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm", Compos. Struct., 187, 344-353. https://doi.org/10.1016/j.compstruct.2017.12.058
  37. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. https://doi.org/10.3390/s18124131
  38. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2019a), "An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm", Eng. Struct., 199, 109637. https://doi.org/10.1016/j.engstruct.2019.109637
  39. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Wahab, M.A. (2019b), "Stiffness identification of truss joints of the nam o bridge based on vibration measurements and model updating", Proceedings of International Conference on Arch Bridges, pp. 264-272.
  40. Tran-Ngoc, H., He, L., Reynders, E., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020a), "An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization", J. Sound Vib., 476, 115315. https://doi.org/10.1016/j.jsv.2020.115315
  41. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020b), "Damage assessment in beam-like structures using cuckoo search algorithm and experimentally measured data", Proceedings of the 13th International Conference on Damage Assessment of Structures, pp. 380-385. https://doi.org/10.1007/978-981-13-8331-1_27
  42. Tran-Ngoc, H., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020c), "A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures", Int. J. Eng. Sci., 157, 103376. https://doi.org/10.1016/j.ijengsci.2020.103376
  43. Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2021a), "Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339
  44. Tran-Ngoc, H., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2021b), "Finite element model updating of a multispan bridge with a hybrid metaheuristic search algorithm using experimental data from wireless triaxial sensors", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01307-9
  45. Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
  46. Tran, N.H. and Bui, T.T. (2019), "Damage detection in a steel beam structure using particle swarm optimization and experimentally measured results", Sci. J. Transport., (9), 3-9.
  47. Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2016), "Structural damage detection using a modified artificial bee colony algorithm", CMES-Comput. Model. Eng. Sci., 111, 335-355.
  48. Yazdanmehr, M., Anijdan, S.M. and Bahrami, A. (2009), "Using GA-ANN algorithm to optimize soft magnetic properties of nanocrystalline mechanically alloyed Fe-Si powders", Computat. Mater. Sci., 44(4), 1218-1221. https://doi.org/10.1016/j.commatsci.2008.08.003
  49. Zenzen, R., Belaidi, I., Khatir, S. and Wahab, M.A. (2018), "A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm", Comptes Rendus Mecanique, 346(12), 1253-1266. https://doi.org/10.1016/j.crme.2018.09.003
  50. Zhou, Y.L. and Wahab, M.A. (2017), "Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network", Mechanics, 23(5), 688-695. http://dx.doi.org/10.5755/j01.mech.23.5.15339