DOI QR코드

DOI QR Code

Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods

  • Firouzi, Behnam (Vibrations and Acoustics Laboratory (VAL), Mechanical Engineering Department, Ozyegin University) ;
  • Abbasi, Ahmad (Vibrations and Acoustics Laboratory (VAL), Mechanical Engineering Department, Ozyegin University) ;
  • Sendur, Polat (Vibrations and Acoustics Laboratory (VAL), Mechanical Engineering Department, Ozyegin University)
  • Received : 2020.09.09
  • Accepted : 2021.03.22
  • Published : 2021.07.25

Abstract

In this paper we study the static deflection, natural frequency, primary resonance of an electrostatically actuated cracked gas sensor. Besides, a novel hybrid metaheuristic algorithm is proposed to detect the location and depth of possible crack on the microcantilever systems. The gas sensor configuration consists of a microcantilever with a rigid plate attached to its end. The nonlinear effects of the electrostatic force and fringing field are taken into account in the mathematical model. The crack is represented by a rotational spring. In the first part, the effect of crack on the static and dynamic pull-in instability are studied. The equations of motion are solved by the application of the perturbation methods. Next, an inverse problem is formulated to predict the location and depth of the crack in the gas sensor. For that purpose, the weighted squared difference of the analytical and predicted frequency response is considered as the objective function. The location and depth of the crack in the microsystem are determined using the hybrid Harris Hawk and Nelder Mead optimization algorithms. The accuracy and efficiency of the proposed algorithm are compared with the HHO, DA, GOA, and WOA algorithms. Taguchi design of experiments method is used in order to tune the parameters of optimization algorithms systematically. It is shown that the proposed algorithm can predict the exact location and depth of the open-edge crack on an electrostatically actuated microbeam with proof mass.

Keywords

References

  1. Abbasi, A., Firouzi, B. and Sendur, P. (2019), "On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks", Eng. Comput., 37, 1409-1428. https://doi.org/10.1007/s00366-019-00892-0
  2. Abdalla, M.M., Reddy, C.K., Faris, W.F. and Gurdal, Z. (2005), "Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage", Comput. Struct., 83(15-16), 1320-1329. https://doi.org/10.1016/j.compstruc.2004.07.010
  3. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. http://dx.doi.org/10.12989/anr.2018.6.1.039
  4. Aleem, S.H.A., Zobaa, A.F., Balci, M.E. and Ismael, S.M. (2019), "Harmonic overloading minimization of frequency-dependent components in harmonics polluted distribution systems using Harris hawks optimization algorithm", IEEE Access, 7, 100824-100837. https://doi.org/10.1109/ACCESS.2019.2930831
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Amouzgar, K., Bandaru, S. andersson, T. and Ng, A.H. (2020), "Metamodel-based multi-objective optimization of a turning process by using finite element simulation", Eng. Optimiz., 52(7), 1261-1278. https://doi.org/10.1080/0305215X.2019.1639050
  7. Bansal, D., Bajpai, A., Kumar, P., Kaur, M. and Kumar, A. (2020), "Effect of Stress on Pull-in Voltage of RF MEMS SPDT Switch", IEEE Transact. Electron Devices, 67(5), 2147-2152. https://doi.org/10.1109/TED.2020.2982667
  8. Bianchi, G. and Radi, E. (2020), "Analytical estimates of the pull-in voltage or carbon nanotubes considering tip-charge concentration and intermolecular forces", Meccanica, 55(1), 193-209. https://doi.org/10.1007/s11012-019-01119-8
  9. Cao, B., Zhao, J., Yang, P., Gu, Y., Muhammad, K., Rodrigues, J.J. and de Albuquerque, V.H.C. (2019a), "Multiobjective 3-D topology optimization of next-generation wireless data center network", IEEE Transact. Indust. Inform., 16(5), 3597-3605. https://doi.org/10.1109/TII.2019.2952565
  10. Cao, B., Zhao, J., Gu, Y., Fan, S. and Yang, P. (2019b), "Security-aware industrial wireless sensor network deployment optimization", IEEE Transact. Industr. Inform, 16(8), 5309-5316. https://doi.org/10.1109/TII.2019.2961340
  11. Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S. and Kumar, P. (2020a), "Hybrid microgrid many-objective sizing optimization with fuzzy decision", IEEE Transact. Fuzzy Syst., 28(11), 2702-2710. https://doi.org/10.1109/TFUZZ.2020.3026140
  12. Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K. and Tanveer, M. (2020b), "Quantum-enhanced multiobjective large-scale optimization via parallelism", Swarm Evolut. Comput., 57, 100697. https://doi.org/10.1016/j.swevo.2020.100697
  13. Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K. and Nasseri, M. (2020c), "An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm", Energy Reports, 6, 530-542. https://doi.org/10.1016/j.egyr.2020.02.035
  14. Cao, B., Wang, X., Zhang, W., Song, H. and Lv, Z. (2020d), "A many-objective optimization model of industrial internet of things based on private blockchain", IEEE Network, 34(5), 78-83. https://doi.org/10.1109/MNET.011.1900536
  15. Cao, B., Zhao, J., Gu, Y., Ling, Y. and Ma, X. (2020e), "Applying graph-based differential grouping for multiobjective large-scale optimization", Swarm Evolut. Comput., 53, 100626. https://doi.org/10.1016/j.swevo.2019.100626
  16. Casciati, S. (2008), "Stiffness identification and damage localization via differential evolution algorithms", Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 15(3), 436-449. https://doi.org/10.1002/stc.236
  17. Chen, Y., He, L., Guan, Y., Lu, H. and Li, J. (2017), "Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales", Energy Convers. Manage., 134, 382-398. ttps://doi.org/10.1016/j.enconman.2016.12.019
  18. Chen, Y., He, L., Li, J. and Zhang, S. (2018), "Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty", Comput. Chem. Eng., 109, 216-235. https://doi.org/10.1016/j.compchemeng.2017.11.014
  19. Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020), "Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies", Future Gener. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008
  20. Cheng, X., He, L., Lu, H., Chen, Y. and Ren, L. (2016), "Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia", J. Hydrol., 540, 412-422. https://doi.org/10.1016/j.jhydrol.2016.06.041
  21. Dastjerdi, S. and Abbasi, M. (2019), "A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method", Ultramicroscopy, 196, 33-39. https://doi.org/10.1016/j.ultramic.2018.09.014
  22. Deng, Y., Zhang, T., Sharma, B.K. and Nie, H. (2019), "Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system", Sci. Total Environ., 646, 1140-1154. https://doi.org/10.1016/j.scitotenv.2018.07.369
  23. Duan, J.S. and Rach, R. (2013), "A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects", Int. J. Solids Struct., 50(22-23), 3511-3518. https://doi.org/10.1016/j.ijsolstr.2013.06.012
  24. Ekinci, S., Hekimoglu, B., Demiroren, A. and Kaya, S. (2019), "Harris Hawks Optimization Approach for Tuning of FOPID Controller in DC-DC Buck Converter", Proceedings of 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1-9.
  25. Firouzi, B. and Zamanian, M. (2019), "The effect of capillary and intermolecular forces on instability of the electrostatically actuated microbeam with T-shaped paddle in the presence of fringing field", Appl. Mathe. Modell., 71, 243-268. https://doi.org/10.1016/j.apm.2019.02.016
  26. Firouzi, B., Zamanian, M. and Hosseini, S.A.A. (2016), "Static and dynamic responses of a microcantilever with a T-shaped tip mass to an electrostatic actuation", Acta Mechanica Sinica, 32(6), 1104-1122. https://doi.org/10.1007/s10409-016-0596-9
  27. Hagedorn, P. and DasGupta, A. (2007), Vibrations and Waves in Continuous Mechanical Systems, pp. 113-120, Chichester, Wiley.
  28. Hassannejad, R. and Amiri Jahed, S. (2018), "Nonlinear Dynamic Analysis of Cracked Micro-Beams Below and at the Onset of Dynamic Pull-In Instability", J. Solid Mech., 10(1), 110-123.
  29. He, R.S. and Hwang, S.F. (2006), "Damage detection by an adaptive real-parameter simulated annealing genetic algorithm", Comput. Struct., 84(31-32), 2231-2243. https://doi.org/10.1016/j.compstruc.2006.08.031
  30. He, Y., Guo, D. and Chu, F. (2001), "Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system", Mathe. Comput. Simul., 57(1-2), 95-108. https://doi.org/10.1016/S0378-4754(01)00295-6
  31. He, L., Chen, Y. and Li, J. (2018a), "A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains", Resour. Conserv. Recycl., 133, 206-228. https://doi.org/10.1016/j.resconrec.2018.02.015
  32. He, L., Chen, Y., Zhao, H., Tian, P., Xue, Y. and Chen, L. (2018b), "Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input", Sci. Total Environ., 627, 1585-1601. https://doi.org/10.1016/j.scitotenv.2018.02.004
  33. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), "Harris hawks optimization: Algorithm and applications", Future Generat. Comput. Syst., 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028
  34. Huang, X., Yang, M., Feng, L., Gu, H., Su, H., Cui, X. and Cao, W. (2017), "Crack detection study for hydraulic concrete using PPP-BOTDA", Smart Struct. Syst., Int. J., 20(1), 75-83. https://doi.org/10.12989/sss.2017.20.1.075
  35. Jena, P.K. and Parhi, D.R. (2015), "A modified particle swarm optimization technique for crack detection in Cantilever Beams", Arab. J. Sci. Eng., 40(11), 3263-3272. https://doi.org/10.1007/s13369-015-1661-6
  36. Jena, P.K., Thatoi, D.N. and Parhi, D.R. (2015), "Dynamically self-adaptive fuzzy PSO technique for smart diagnosis of transverse crack", Appl. Artif. Intell., 29(3), 211-232. https://doi.org/10.1080/08839514.2015.1004611
  37. Khater, M.E., Al-Ghamdi, M., Park, S., Stewart, K.M., Abdel-Rahman, E.M., Penlidis, A. and Basha, M. (2014), "Binary MEMS gas sensors", J. Micromech. Microeng., 24(6), 065007. https://doi.org/10.1088/0960-1317/24/6/065007
  38. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M. A. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mecanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008
  39. Liu, E., Lv, L., Yi, Y. and Xie, P. (2019), "Research on the steady operation optimization model of natural gas pipeline considering the combined operation of air coolers and compressors", IEEE Access, 7, 83251-83265. https://doi.org/10.1109/ACCESS.2019.2924515
  40. Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241
  41. Mirjalili, S. (2016) "Dragonfy algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Comput. Appl., 27(4), 1053-1073. https://doi.org/10.1007/s00521-015-1920-1
  42. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  43. Moezi, S.A., Zakeri, E., Zare, A. and Nedaei, M. (2015), "On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler-Bernoulli beam", Comput. Struct., 157, 42-50. https://doi.org/10.1016/j.compstruc.2015.05.008
  44. Moezi, S.A., Zakeri, E. and Zare, A. (2018a), "A generally modified cuckoo optimization algorithm for crack detection in cantilever Euler-Bernoulli beams", Precision Eng., 52, 227-241. https://doi.org/10.1016/j.precisioneng.2017.12.010
  45. Moezi, S.A., Zakeri, E. and Zare, A. (2018b), "Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder-Mead optimization method", Mech. Syst. Signal Process., 99, 805-831. https://doi.org/10.1016/j.ymssp.2017.07.013
  46. Moradi, S., Razi, P. and Fatahi, L. (2011), "On the application of bees algorithm to the problem of crack detection of beam-type structures", Comput. Struct., 89(23-24), 2169-2175. https://doi.org/10.1016/j.compstruc.2011.08.020
  47. Motallebi, A., Fathalilou, M. and Rezazadeh, G. (2012), "Effect of the open crack on the pull-in instability of an electrostatically actuated micro-beam", Acta Mechanica Solida Sinica, 25(6), 627-637. https://doi.org/10.1016/S0894-9166(12)60058-5
  48. Nayfeh, A.H., Ouakad, H.M., Najar, F., Choura, S. and Abdel-Rahman, E.M. (2010), "Nonlinear dynamics of a resonant gas sensor", Nonlinear Dyn., 59(4), 607-618. https://doi.org/10.1007/s11071-009-9567-z
  49. Nelder, J.A. and Mead, R. (1965), "A simplex method for function minimization", Comput. J., 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
  50. Ouakad, H.M. (2015), "The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads", J. Vib. Control, 21(14), 2739-2754. https://doi.org/10.1177/1077546313514763
  51. Ouakad, H.M. and Younis, M.I. (2008), "Modelling and simulation of a cantilever-paddle beam under the effect of capillary, shock, and electrostatic forces", Proceedings of ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 677-682), American Society of Mechanical Engineers Digital Collection.
  52. Pawar, P.M. and Ganguli, R. (2003), "Genetic fuzzy system for damage detection in beams and helicopter rotor blades", Comput. Methods Appl. Mech. Eng., 192(16-18), 2031-2057. https://doi.org/10.1016/S0045-7825(03)00237-8
  53. Qu, S., Han, Y., Wu, Z. and Raza, H. (2020), "Consensus modeling with asymmetric cost based on data-driven robust optimization", Group Decision and Negotiation, 1-38. https://doi.org/10.1007/s10726-020-09707-w
  54. Rajabi, M., Shamshirsaz, M. and Naraghi, M. (2017), "Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment", Smart Struct. Syst., Int. J., 19(4), 361-369. https://doi.org/10.12989/sss.2017.19.4.361
  55. Rajan, A. and Malakar, T. (2015), "Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm", Int. J. Electr. Power Energy Syst., 66, 9-24. https://doi.org/10.1016/j.ijepes.2014.10.041
  56. Rezaiee-Pajand, M. and Tavakoli, F.H. (2015), "Crack detection in concrete gravity dams using a genetic algorithm", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 168(3), 192-209. https://doi.org/10.1680/stbu.12.00078
  57. Roy, R.K. (2001), Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley and Sons.
  58. Roy, D.K., Barzegar, R., Quilty, J. and Adamowski, J. (2020), "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones", J. Hydrol., 591, 125509. https://doi.org/10.1016/j.jhydrol.2020.125509
  59. Sahoo, B. and Maity, D. (2007), "Damage assessment of structures using hybrid neuro-genetic algorithm", Appl. Soft Comput., 7(1), 89-104. https://doi.org/10.1016/j.asoc.2005.04.001
  60. Sarakhsi, M.K., Ghomi, S.F. and Karimi, B. (2016), "A new hybrid algorithm of scatter search and Nelder-Mead algorithms to optimize joint economic lot sizing problem", J. Computat. Appl. Mathe., 292, 387-401. https://doi.org/10.1016/j.cam.2015.07.027
  61. Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: theory and application", Adv. Eng Softw., 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004
  62. Shaat, M., Khorshidi, M.A., Abdelkefi, A. and Shariati, M. (2016), "Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials", Int. J. Mech. Sci., 115, 574-585. https://doi.org/10.1016/j.ijmecsci.2016.07.037
  63. Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowl.-Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
  64. Sourki, R. and Hoseini, S.A.H. (2016), "Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory", Appl. Phys. A, 122(4), 413. https://doi.org/10.1007/s00339-016-9961-6
  65. Sun, G., Yang, B., Yang, Z. and Xu, G. (2019), "An adaptive differential evolution with combined strategy for global numerical optimization", Soft Computing, 24, 6277-6296. https://doi.org/10.1007/s00500-019-03934-3
  66. Sutar, M.K., Pattnaik, S. and Modi, P.K. (2021), "Parametric Optimization of Cracked Cantilever Beam Using Genetic Algorithm", Trends Manuf. Eng. Manage., 915-921. https://doi.org/10.1007/978-981-15-4745-4_79
  67. Too, J., Abdullah, A.R. and Mohd Saad, N. (2019), "A new quadratic binary harris hawk optimization for feature selection", Electronics, 8(10), 1130. https://doi.org/10.3390/electronics8101130
  68. Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), "Crack detection in beam-like structures using genetic algorithms", Appl. Soft Comput., 8(2), 1150-1160. https://doi.org/10.1016/j.asoc.2007.10.003
  69. Vakil-Baghmisheh, M.V., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12(8), 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
  70. Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z, and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
  71. Xiang, J., Zhong, Y., Chen, X. and He, Z. (2008), "Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm", Int. J. Solids Struct., 45(17), 4782-4795. https://doi.org/10.1016/j.ijsolstr.2008.04.014
  72. Yang, X.S. (2010), Nature-inspired Metaheuristic Algorithms, Luniver Press.
  73. Ye, X., Lyu, Z. and Foong, L.K. (2020a), "Hybridized dragonfly, whale and ant lion algorithms in enlarged pile's behavior", Smart Struct. Syst., Int. J., 25(6), 765-778. https://doi.org/10.12989/sss.2020.25.6.765
  74. Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020b). "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., Int. J., 26(3), 263-275. https://doi.org/10.12989/sss.2020.26.3.263
  75. Yildiz, A.R., Yildiz, B.S., Sait, S.M. and Li, X. (2019a), "The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations", Mater. Test, 61(8), 725-733. https://doi.org/10.3139/120.111377
  76. Yildiz, A.R., Yildiz, B.S., Sait, S.M., Bureerat, S. and Pholdee, N. (2019b), "A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems", Mater. Test, 61(8), 735-743. https://doi.org/10.3139/120.111378
  77. Younis, M.I. (2011), MEMS Linear and Nonlinear Statics and Dynamics, (Vol. 20), Springer Science and Business Media.
  78. Zamanian, M., Javadi, S., Firouzi, B. and Hosseini, S.A.A. (2018), "Modeling and analysis of power harvesting by a piezoelectric layer coated on an electrostatically actuated microcantilever", Mater. Res. Express, 5(12), 125502. https://doi.org/10.1088/2053-1591/aadf15
  79. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
  80. Zhang, X., Gao, R.X., Yan, R., Chen, X., Sun, C. and Yang, Z. (2016), "Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization", J. Sound Vib., 375, 200-216. https://doi.org/10.1016/j.jsv.2016.04.018
  81. Zhou, H., Zhang, W.M., Peng, Z.K. and Meng, G. (2015), "Dynamic characteristics of electrostatically actuated microbeams with slant crack", Mathe. Problems Eng. https://doi.org/10.1155/2015/208065