과제정보
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.01-2019.332.
참고문헌
- Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018), "1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data", Neurocomputing, 275, 1308-1317. https://doi.org/10.1016/j.neucom.2017.09.069
- Ai, D., Luo, H. and Zhu, H. (2016), "Diagnosis and validation of damaged piezoelectric sensor in electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 28(7), 837-850. https://doi.org/10.1177/1045389x16657427
- Annamdas, V.G.M., Radhika, M.A. and Yang, Y. (2009), "Easy installation method of piezoelectric (PZT) transducers for health monitoring of structures using electro-mechanical impedance technique", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (Volume 7292, pp. 729227-729221), San Diego, CA, USA, March.
- Azimi, M. and Pekcan, G. (2020), "Structural health monitoring using extremely compressed data through deep learning", Comput.-Aided Civil Infrastr. Eng., 35(6), 597-614. https://doi.org/10.1111/mice.12517
- Bhalla, S. and Moharana, S. (2012), "A refined shear lag model for adhesively bonded piezo-impedance transducers", J. Intell. Mater. Syst. Struct., 24(1), 33-48. https://doi.org/10.1177/1045389x12457837
- Dang, N.-L., Huynh, T.-C. and Kim, J.-T. (2019), "Local strandbreakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-Feasibility study", Sensors, 19(5), 1054. https://doi.org/10.3390/s19051054
- Giurgiutiu, V., Zagrai, A. and Jing Bao, J. (2002), "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring", Struct. Health Monitor., 1(1), 41-61. https://doi.org/10.1177/147592170200100104
- Gresil, M., Yu, L., Giurgiutiu, V. and Sutton, M. (2012), "Predictive modeling of electromechanical impedance spectroscopy for composite materials", Struct. Health Monitor., 11(6), 671-683. https://doi.org/10.1177/1475921712451954
- Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L. and Wang, G. (2015), "Recent advances in convolutional neural networks", Pattern Recogn., 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
- Huynh, T.-C. (2020), "Structural parameter identification of a bolted connection embedded with a piezoelectric interface", Vietnam J. Mech., 1-16. https://doi.org/10.15625/0866-7136/14806
- Huynh, T.-C. (2021), "Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application", Automat. Constr., 124, 103591. https://doi.org/10.1016/j.autcon.2021.103591
- Huynh, T.-C. and Kim, J.-T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Mathe. Problems Eng., 11, Article 784731. https://doi.org/10.1155/2014/784731
- Huynh, T.-C. and Kim, J.-T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2018), "Preload monitoring in bolted connection using piezoelectric-based smart interface", Sensors, 18(9), 2766. https://doi.org/10.3390/s18092766
- Huynh, T.-C., Lee, S.-Y., Dang, N.-L. and Kim, J.-T. (2019), "Sensing region characteristics of smart piezoelectric interface for damage monitoring in plate-like structures", Sensors, 19(6), 1377. https://doi.org/10.3390/s19061377
- Huynh, T.-C., Nguyen, T.-D., Ho, D.-D., Dang, N.-L. and Kim, J.-T. (2020), "Sensor Fault Diagnosis for Impedance Monitoring Using a Piezoelectric-Based Smart Interface Technique", Sensors, 20(2), 510. https://doi.org/10.3390/s20020510
- Jin, C. and Wang, X. (2011), "Analytical modelling of the electromechanical behaviour of surface-bonded piezoelectric actuators including the adhesive layer", Eng. Fract. Mech., 78(13), 2547-2562. https://doi.org/10.1016/j.engfracmech.2011.06.014
- Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9781139171731
- Kim, J.-T., Park, J.-H., Hong, D.-S. and Park, W.-S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, H., Liu, X., Ahn, E., Shin, M., Shin, S.W. and Sim, S.-H. (2019), "Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique", NDT & E Int., 104, 90-97. https://doi.org/10.1016/j.ndteint.2019.04.004
- LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Computat., 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Li, W., Liu, T., Zou, D., Wang, J. and Yi, T.-H. (2019), "PZT based smart corrosion coupon using electromechanical impedance", Mech. Syst. Signal Process., 129, 455-469. https://doi.org/https://doi.org/10.1016/j.ymssp.2019.04.049
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct, 5(1), 12-20. https://doi.org/10.1177/1045389x9400500102
- Mansoor, M.B., Koble, S., Wong, T.W., Woias, P. and Goldschmidtboing, F. (2017), "Design, characterization and sensitivity analysis of a piezoelectric ceramic/metal composite transducer", Micromachines, 8(9), 271. https://www.mdpi.com/2072-666X/8/9/271 https://doi.org/10.3390/mi8090271
- Min, J., Park, S. and Yun, C.-B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011. http://stacks.iop.org/0964-1726/19/i=12/a=125011 https://doi.org/10.1088/0964-1726/19/12/125011
- Nguyen, K.-D. and Kim, J.-T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., Int. J., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
- Nguyen, K.-D., Lee, S.-Y., Lee, P.-Y. and Kim, J.-T. (2011), "Wireless SHM for bolted connections via multiple PZT-interfaces and Imote2-platformed impedance sensor node", Proceedings of the 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST2011), Dalian, China, July.
- Ong, C., Yang, Y., Wong, Y., Bhalla, S., Lu, Y. and Soh, C.K. (2003), "Effects of adhesive on the electromechanical response of a piezoceramic-transducer-coupled smart system", In: Smart Materials, Structures, and Systems, Vol. 5062, pp. 241-247.
- Park, G., Cudney, H.H. and Inman, D.J. (2001), "Feasibility of using impedance-based damage assessment for pipeline structures", Earthq. Eng. Struct. Dyn., 30(10), 1463-1474. https://doi.org/10.1002/eqe.72
- Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128(4), 469-478. https://doi.org/10.1115/1.2202157
- Park, S., Park, G., Yun, C.-B. and Farrar, C.R. (2008), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", Struct. Health Monitor., 8(1), 71-82. https://doi.org/10.1177/1475921708094792
- Pasquier, R. and Smith, I.F.C. (2016), "Iterative structural identification framework for evaluation of existing structures", Eng. Struct., 106, 179-194. https://doi.org/https://doi.org/10.1016/j.engstruct.2015.09.039
- Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13(1), 20. http://stacks.iop.org/0964-1726/13/i=1/a=003 https://doi.org/10.1088/0964-1726/13/1/003
- Ryu, J.-Y., Huynh, T.-C. and Kim, J.-T. (2019), "Tension force estimation in axially loaded members using wearable piezoelectric interface technique", Sensors, 19(1), 47. https://doi.org/10.3390/s19010047
- Shih, H.W., Thambiratnam, D.P. and Chan, T.H.T. (2009), "Vibration based structural damage detection in flexural members using multi-criteria approach", J. Sound Vib., 323(3), 645-661. https://doi.org/https://doi.org/10.1016/j.jsv.2009.01.019
- Sirca, G.F. and Adeli, H. (2012), "System identification in structural engineering", Scientia Iranica, 19(6), 1355-1364. https://doi.org/https://doi.org/10.1016/j.scient.2012.09.002
- Song, G., Gu, H. and Mo, Y.-L. (2008), "Smart aggregates: multi-functional sensors for concrete structures-a tutorial and a review", Smart Mater. Struct., 17(3), 033001. https://doi.org/10.1088/0964-1726/17/3/033001
- Stubbs, N. and Kim, J.T. (1996), "Damage localization in structures without baseline modal parameters", AIAA J., 34(8), 1644-1649. https://doi.org/10.2514/3.13284
- Tawie, R., Park, H.B., Baek, J. and Na, W.S. (2019), "Damage detection performance of the electromechanical impedance (EMI) technique with various attachment methods on glass fibre composite plates", Sensors, 19(5), 1000. https://www.mdpi.com/1424-8220/19/5/1000 https://doi.org/10.3390/s19051000
- Uddin, M.N., Islam, M.S., Sampe, J., Ali, S.H.M. and Bhuyan, M.S. (2016), "Design and simulation of piezoelectric cantilever beam based on mechanical vibration for energy harvesting application", Proceedings of 2016 International Conference on Innovations in Science, Engineering and Technology (ICISET), Dhaka, Bangladesh, October.
- Xu, Y. and Liu, G. (2002), "A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches", J. Intell. Mater. Syst. Struct., 13(6), 389-396. https://doi.org/10.1177/104538902761696733
- Yan, S., Sun, W., Song, G., Gu, H., Huo, L.-S., Liu, B. and Zhang, Y.-G. (2009), "Health monitoring of reinforced concrete shear walls using smart aggregates", Smart Mater. Struct., 18(4), 047001. https://doi.org/10.1088/0964-1726/18/4/047001