과제정보
The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (51722804, 51878274, 51978155), the National Ten Thousand Talent Program for Young Top-notch Talents (W03070080), and the Project of Scientific Research and Development Plan of China-railway.
참고문헌
- Agrawal, A.K. and Yang, J.N. (1999), "Design of passive energy dissipation systems based on LQR control methods", J. Intell. Mater. Syst. Struct., 10(12), 933-944. https://doi.org/10.1106/FB58-N1DG-ECJT-B8H4
- Ahmad, J., Cheng, S.H. and Ghrib, F. (2018), "Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks", J. Sound Vib., 417, 132-148. https://doi.org/10.1016/j.jsv.2017.12.023
- Cai, C.S., Wu, W.J. and Araujo, M. (2007), "Cable vibration control with a TMD-MR damper system: experimental exploration", J. Struct. Eng., 133(5), 629-637. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(629)
- Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Yang, G. and Hu, J.H. (2004), "MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., Int. J., 7(5), 293-304. https://doi.org/10.12989/was.2004.7.5.293
- Chen, L., Sun, L.M. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., Int. J., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627
- Chen, L., Nagarajaiah, S. and Sun, L.M. (2021), "A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control", J. Sound Vib., 494: 115814. https://doi.org/10.1016/j.jsv.2020.115814
- Christenson, R.E., Spencer, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
- Domenico, D.D. and Ricciardi, G. (2019), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. D., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
- Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semiactive magnetorheological dampers", Comput-Aided. Civ. Inf., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x
- Duan, Y., Ni, Y.Q., Zhang, H., Spencer Jr, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537
- Fournier, J.A. and Cheng, S.H. (2014), "Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations", J. Bridge Eng., 19(4), 04013022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000562
- Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)
- Gao, H., Wang, H., Li, J., Wang, Z., Liang, R., Xu, Z. and Ni, Y. (2021), "Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables", Eng. Struct., 226, 111375. https://doi.org/10.1016/j.engstruct.2020.111375
- Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng., 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863
- He, X., Cai, C., Wang, Z., Jing, H. and Qin, C. (2018), "Experimental verification of the effectiveness of elastic cross-ties in suppressing wake-induced vibrations of staggered stay cables", Eng. Struct., 167, 151-165. https://doi.org/10.1016/j.engstruct.2018.04.033
- Hoang, N. and Fujino, Y. (2008), "Combined damping effect of two dampers on a stay cable", J. Bridge Eng., 13(3), 299-303. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(299)
- Hu, Y., Chen, M.Z., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041
- Huang, H.W., Liu, T.T. and Sun, L.M. (2019a), "Multi-mode cable vibration control using MR damper based on nonlinear modeling", Smart Struct. Syst., Int. J., 23(6), 565-577. https://doi.org/10.12989/sss.2019.23.6.565
- Huang, Z., Hua, X., Chen, Z. and Niu, H. (2019b), "Performance evaluation of inerter-based damping devices for structural vibration control of stay cables", Smart Struct. Syst., Int. J., 23(6), 615-626. https://doi.org/10.12989/sss.2019.23.6.615
- Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
- Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., INt. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285
- Javanbakht, M., Cheng, S.H. and Ghrib, F. (2020), "Multimode vibration control of stay cables using optimized negative stiffness damper", Struct. Control Health Monit., 27(4), e2503. https://doi.org/10.1002/stc.2503
- Jeong, S., Lee, J., Cho, S. and Sim, S.H. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695
- Johnson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput-Aided. Civil Inf., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305
- Jung, H.J., Spencer Jr, B.F., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., Int. J., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493
- Kim, I.H., Jung, H.J. and Koo, J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable", Smart Mater. Struct., 19(11), 115027. https://doi.org/10.1088/0964-1726/19/11/115027
- Kleissl, K. and Georgakis, C.T. (2012), "Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface", J. Wind Eng. Ind. Aerod., 104, 166-175. https://doi.org/10.1016/j.jweia.2012.02.031
- Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Die Bautechnik., 59, 325-32. [In German]
- Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037
- Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Strut. D., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390
- Lazar, I.F., Neild, S.A. and Wagg, D.J. (2016), "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017
- Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200
- Li, S., Chen, Z., Wu, T. and Kareem, A. (2013), "Rain-wind-induced in-plane and out-of-plane vibrations of stay cables", J. Eng. Mech., 139, 1688-1698. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000612
- Li, Y.M., Shen, W.A. and Zhu, H.P. (2019), "Vibration mitigation of stay cables using electromagnetic inertial mass dampers: fullscale experiment and analysis", Eng. Struct., 200, 109693. https://doi.org/10.1016/j.engstruct.2019.109693
- Li, J.Y., Zhu, S., Shi, X. and Shen, W. (2020), "Electromagnetic shunt damper for bridge cable vibration mitigation: full-scale experimental study", J. Struct. Eng., 146(1), 04019175. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002477
- Liu, M., Yang, W., Chen, W. and Li, H. (2019), "Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers", Smart Struct. Syst., Int. J., 23(6), 579-587. https://doi.org/10.12989/sss.2019.23.6.579
- Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monit., 24(10), e1986. https://doi.org/10.1002/stc.1986
- Lu, L., Fermandois, G.A., Lu, X., Spencer Jr, B.F., Duan, Y.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589
- Luo, J.N., Jiang, J.Z. and Macdonald, J.H.G. (2019), "Cable vibration suppression with inerter-based absorbers", J. Eng. Mech., 145(2), 04018134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554
- Main, J.A. and Jones, N.P. (2002), "Free vibrations of taut cable with attached damper. I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062)
- Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
- Ma, R.S., Bi, K.M. and Hao, H. (2020), "Using inerter-based control device to mitigate heave and pitch motions of semi-submersible platform in the shallow sea", Eng. Struct., 207, 110248. https://doi.org/10.1016/j.engstruct.2020.110248
- Ma, R.S., Bi, K.M., Hao, H. (2021), "A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model", Mech. Syst. Signal PR., 149, 107313. https://doi.org/10.1016/j.ymssp.2020.107313
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilist. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007
- Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
- Ni, Y.Q., Wang, X.Y., Chen, Z.Q. and Ko, J.M. (2007), "Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge", J. Wind Eng. Ind. Aerod., 95(5), 303-328. https://doi.org/10.1016/j.jweia.2006.07.001
- Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
- Shen, X., Ma, R.J., Ge, C.X. and Hu, X.H. (2018), "Long-term monitoring of super-long stay cables on a cable-stayed bridge", Wind Struct., Int. J., 27(6), 357-368. https://doi.org/10.12989/was.2018.27.6.357
- Shi, X. and Zhu, S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042
- Shi, X., Zhu, S., Li, J.Y. and Spencer, B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044
- Shi, X., Zhu, S.Y. and Spencer, B.F. (2017), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289
- Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", Ieee. T. On. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532
- Sun, L.M., Hong, D.X. and Chen, L. (2017), "Cables interconnected with tuned inerter damper for vibration mitigation", Eng. Struct., 151, 57-67. https://doi.org/10.1016/j.engstruct.2017.08.009
- Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013
- Wang, Z.H., Xu, Y.W., Gao, H., Chen, Z.Q., Xu, K. and Zhao, S.B. (2019), "Vibration control of a stay cable with a rotary electromagnetic inertial mass damper", Smart Struct. Syst., Int. J., 23(6), 627-639. https://doi.org/10.12989/sss.2019.23.6.627
- Wang, H., Mao, J.X. and Xu, Z.D. (2020), "Investigation of dynamic properties of a long-span cable-stayed bridge during typhoon events based on structural health monitoring", J. Wind Eng. Ind. Aerod., 201, 104172. https://doi.org/10.1016/j.jweia.2020.104172
- Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015
- Weber, F., Feltrin, G., Maslanka, M., Fobo, W. and Distl, H. (2009), "Design of viscous dampers targeting multiple cable modes", Eng. Struct., 31(11), 2797-2800. https://doi.org/10.1016/j.engstruct.2009.06.020
- Zhang, R., Ni, Y.Q., Duan, Y. and Ko, J.M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553
- Zhang, R., Zhao, Z., Pan, C., Ikago, K. and Xue, S. (2020), "Damping enhancement principle of inerter system", Struct. Control Health Monit. 27(5), e2523. https://doi.org/10.1002/stc.2523
- Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control Health Monit., 23(4), 764-782. https://doi.org/10.1002/stc.1809
- Zhou, H., Huang, X., Xiang, N., He, J., Sun, L. and Xing, F. (2018a), "Free vibration of a taut cable with a damper and a concentrated mass", Struct. Control Health Monit., 25(11), e2251. https://doi.org/10.1002/stc.2251
- Zhou, H., Xiang, N., Huang, X., Sun, L., Xing, F. and Zhou, R. (2018b), "Full-scale test of dampers for stay cable vibration mitigation and improvement measures", Struct. Monit. Maint., Int. J., 5(4), 489-506. https://doi.org/10.12989/smm.2018.5.4.489
- Zhu, H., Li, Y., Shen, W. and Zhu, S. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal PR., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023