Acknowledgement
This study is supported by National Natural Science Foundation of China (Grant No. 51678235), to which the authors are grateful.
References
- Bang, H.T., Park, S. and Jeon, H. (2020), "Defect identification in composite materials thermography and deep learning techniques", Compos. Struct., 246, 112405. https://doi.org/10.1016/j.compstruct.2020.112405
- Biscarini, C., Catapano, I., Cavalagli, N., Ludeno, G., Pepe, F.A. and Ubertini, F. (2020), "UAV photogrammetry, infrared thermography and GPR for enhancing structural and material degradation evaluation of the Roman masonry bridge of Ponte Lucano in Italy", NDT & E Int., 115, 102287. https://doi.org/10.1016/j.ndteint.2020.102287
- Cheng, C., Shang, Z. and Shen, Z. (2019), "Bridge deck delamination segmentation based on aerial thermography through regularized grayscale morphological reconstruction and gradient statistics", Infrared Phys. Technol., 98, 240-249. https://doi.org/10.1016/j.infrared.2019.03.018
- Cheng, C., Shang, Z. and Shen, Z. (2020), "Automatic delamination segmentation for bridge deck based on encoder-decoder deep learning through UAV-based thermography", NDT & E Int., 116, 102341. https://doi.org/10.1016/j.ndteint.2020.102341
- Cotic, P., Kolaric, D., Bosiljkov, V.B., Bosiljkov, V. and Jaglicic, Z. (2015), "Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography", NDT & E Int., 74, 87-93. https://doi.org/10.1016/j.ndteint.2015.05.003
- Ellenberg, A., Kontsos, A., Moon, F. and Bartoli, I. (2016), "Bridge deck delamination identification from unmanned aerial vehicle infrared thermography", Automat. Constr., 72, 155-165. https://doi.org/10.1016/j.autcon.2016.08.024
- Feng, L. and Wang, H. (2014), "Experimental Study on Inside Defects of Building Exterior Wall Decoration Layer by Infrared Thermal Imaging Method", J. Chongqing Jianzhu Univ. China, 36(2), 57-61.
- Gong, X., Yao, Q., Wang, M. and Lin, Y. (2018), "A deep learning approach for oriented electrical equipment detection in thermal images", IEEE Access, 6, 41590-41597. https://doi.org/10.1109/ACCESS.2018.2859048
- Hwang, S., An, Y.K., Yang, J. and Sohn, H. (2020), "Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography", Int. J. Precis. Eng. Manuf.-Green Technol., 1-14. https://doi.org/10.1007/s40684-020-00192-9
- Jang, K., Kim, N. and An, Y.K. (2019), "Deep learning-based autonomous concrete crack evaluation through hybrid image scanning", Struct. Health Monitor., 18(5-6), 1722-1737. https://doi.org/10.1177/1475921718821719
- Jang, K., An, Y.K., Kim, B. and Cho, S. (2021), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastruct. Eng., 36, 14-29. https://doi.org/10.1111/mice.12550
- Janssens, O., Van de Walle, R., Loccufier, M. and Van Hoecke, S. (2018), "Deep learning for infrared thermal image based machine health monitoring", IEEE/ASME Transact. Mechatron., 23(1), 151-159. https://doi.org/10.1109/TMECH.2017.2722479
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291
- Kim, D., Youn, J. and Kim, C. (2016), "Automatic photovoltaic panel area extraction from uav thermal infrared images", J. Korean Soc. Survey. Geodesy Photogram. Cartogr., 34(6), 559-568. https://doi.org/10.7848/ksgpc.2016.34.6.559
- Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Concrete crack identification using a UAV incorporating hybrid image processing", Sensors, 17(9), 2052. https://doi.org/10.3390/s17092052
- Li, K., Wang, X., Guo, B., Liu, H., and Yuan, H. (2018), "Dynamic simulation of imaging blurring effect of infrared system under vibration of carrier platform", Infrared Laser Eng. China, 47(09), 83-88. https://doi.org/10.3788/IRLA201847.0904004
- Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H., Wen, M.C. and Tsai, M.H. (2014), "A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering", Smart Struct. Syst., Int. J., 13(6), 1065-1094. http://dx.doi.org/10.12989/sss.2014.13.6.1065
- Luo, Q., Gao, B., Woo, W.L. and Yang, Y. (2019), "Temporal and spatial deep learning network for infrared thermal defect detection", NDT & E Int., 108, 102164. https://doi.org/10.1016/j.ndteint.2019.102164
- Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M. and Rodehorst, V. (2019), "Framework for automated UAS-based structural condition assessment of bridges", Automat. Constr., 97, 77-95. https://doi.org/10.1016/j.autcon.2018.10.006
- Omar, T. and Nehdi, M.L. (2017), "Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography", Automat. Constr., 83, 360-371. https://doi.org/10.1016/j.autcon.2017.06.024
- Ozcan, O. and Ozcan, O. (2021), "Automated UAV based multi-hazard assessment system for bridges crossing seasonal rivers", Smart Struct. Syst., Int. J., 27(1), 35-52. https://doi.org/10.12989/sss.2021.27.1.035
- Pitarma, R., Crisostomo, J. and Pereira, L. (2019), "Detection of wood damages using infrared thermography", Procedia Comput. Sci., 155, 480-486. https://doi.org/10.1016/j.procs.2019.08.067
- Rocha, J.H.A., Povoas, Y.V. and Santos, C.F. (2019), "Detection of delaminations in sunlight-unexposed concrete elements of bridges using infrared thermography", J. Nondestr. Eval., 38(1), 1-12. https://doi.org/10.1007/s10921-018-0546-5
- Saeed, N., King, N., Said, Z. and Omar, M.A. (2019), "Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning", Infrared Phys. Technol., 102, 103048. https://doi.org/10.1016/j.infrared.2019.103048
- Sirca Jr, G.F. and Adeli, H. (2018), "Infrared thermography for detecting defects in concrete structures", J. Civil Eng. Manage., 24, 508-515. https://doi.org/10.3846/jcem.2018.6186
- Wang, X., Hu, F. and Huang, S. (2020), "Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering", J. Commun. China, 41(5), 120-129.
- Yu, J., Jiang, Y., Wang, Z., Cao, Z. and Huang, T. (2016), "Unitbox: An advanced object detection network", Proceedings of the 24th ACM International Conference on Multimedia, pp. 516-520.
- Zhang, X., Li, C., Meng, Q., Liu, S., Zhang, Y. and Wang, J. (2018), "Infrared image super resolution by combining compressive sensing and deep learning", Sensors, 18(8), 2587. https://doi.org/10.3390/s18082587
- Zhang, R., Li, H., Duan, K., You, S., Liu, K., Wang, F. and Hu, Y. (2020), "Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging", Remote Sens., 12(16), 2621. https://doi.org/10.3390/rs12162621
- Zhong, X., Peng, X., Yan, S., Shen, M. and Zhai, Y. (2018), "Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles", Automat. Constr., 89, 49-57. https://doi.org/10.1016/j.autcon.2018.01.005
- Zhou, X., Wang, D. and Krahenbuhl, P. (2019), "Objects as Points", arXiv:1904.07850.
- Zhu, H., Yi, C., Hu, Y. and Liu, Q. (2016), "Study on Detection Conditions for Infrared Thermography Diagnosis of Debonding Defect of Exterior Wall Decoration Layer", Build. Technol. China, 47(2), 172-175.