Acknowledgement
Ze-Fen Yu (Yunnan University) is acknowledged for helping with specimen collection.
References
- Naumov NA. Opredelitel Mukorovykh (Mucorales). Ed. 2. Moscow (Russia); Leningrad (Russia): Bot. Inst. Acad. Sci. U.S.S.R; 1935. p. 136.
- Benjamin RK. The merosporangiferous Mucorales. Aliso. 1959;4(2):321-433. https://doi.org/10.5642/aliso.19590402.05
- Hesseltine CW. Genera of Mucorales with notes on their synonymy. Mycologia. 1955;47(3):344-363. https://doi.org/10.2307/3755457
- Pidoplichko NM, Mil'ko AA. Atlas mukoral'vykh gribov Atlas of the Mucorales. Izdat. Kiev (Ukraine): 'Naukova Dumka'; 1971. p. 115.
- Hesseltine CW, Ellis JJ. Mucorales. In Ainsworth GC, Sparrow FK, Sussman AS, editors. The fungi. Vol. 4b. New York (NY): Academic Press; 1955. p. 187-217.
- Mil'ko AA. Opredeltiel' mukoral'nykh gribov Key to the identification of Mucorales. Kiev (Ukraine): 'Naukova Dumka'; 1974. p. 303.
- Benny GL, Benjamin RK. Observations on Thamnidiaceae (Mucorales). II. Chaetocladium, Cokeromyces, Mycotypha, and Phascolomyces. Aliso. 1976;8(4):391-424. https://doi.org/10.5642/aliso.19760804.05
- Cannon PF, Kirk PM. Fungal families of the world. Wallingford (UK): CAB International; 2007. p. 456.
- Benny GL. Zygomycetes [Internet]. 2020 [cited Accessed 2020 November 20]. Retrieved from: www.zygomycetes.org
- Eucker J, Sezer O, Graf B, et al. Mucormycoses. Mycoses. 2001;44(7-8):253-260. https://doi.org/10.1111/j.1439-0507.2001.00656.x
- Ghasemi S, Heidary M, Habibi Z. The 11α-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum. Steroids. 2019;149:108427. https://doi.org/10.1016/j.steroids.2019.108427
- Chen J, Fan F, Qu G, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31-42. https://doi.org/10.1016/j.ymben.2019.10.006
- van Tieghem P. Troisieme memoire sur les Mucorinees. Annales Des Siences Naturelles, Botanique, Ser VI. 1876;4:312-398.
- Zhang TY, Yu Y, Zhu H, et al. Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol. 2018;68(8):2468-2472. https://doi.org/10.1099/ijsem.0.002857
- Ling Y. Etude biologique des phenomenes de la sexualite chez les Mucorinees. Appendice Revue Generale de Botanique. 1930;42:722-752.
- Hesseltine CW, Ellis JJ. Notes on Mucorales, especially Absidia. Mycologia. 1961;53(4):406-426. https://doi.org/10.2307/3756584
- Hoffmann K, Discher S, Voigt K. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol Res. 2007;111(10):1169-1183. https://doi.org/10.1016/j.mycres.2007.07.002
- Walther G, Pawlowska J, Alastruey-Izquierdo A, et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia. 2013;30:11-47. https://doi.org/10.3767/003158513X665070
- Fakas S, Papanikolaou S, Galiotou-Panayotou M, et al. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol. 2008;105(4):1062-1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x
- Alakhras R, Bellou S, Fotaki G, et al. Fatty acid lithium salts from Cunninghamella echinulata have cytotoxic and genotoxic effects on HL-60 human leukemia cells. Eng Life Sci. 2015;15(2):243-253. https://doi.org/10.1002/elsc.201400208
- Zhao H, Lv ML, Liu Z, et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. BioEnergy Res. 2020;
- Zheng RY, Chen GQ. A monograph of Cunninghamella. Mycotaxon. 2001;80:1-75.
- Zhang ZY, Zhao YX, Shen X, et al. Molecular phylogeny and morphology of Cunninghamella guizhouensis sp. nov. (Cunninghamellaceae, Mucorales), from soil in Guizhou, China. Phytotaxa. 2020;455(1):31-39. https://doi.org/10.11646/phytotaxa.455.1.4
- Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109(16):6241-6246. https://doi.org/10.1073/pnas.1117018109
- Su YC, Huang H, Liu XY, et al. Systematic relationship of several controversial Cunninghamella taxa inferred from sequence comparisons of ITS2 of rDNA. Mycol Res. 1999;103(7):805-810. https://doi.org/10.1017/S0953756298007667
- Liu XY, Huang H, Zheng RY. Relationships within Cunninghamella based on sequence analysis of ITS rDNA. Mycotaxon. 2001;80:77-95.
- Guo J, Wang H, Liu D, et al. Isolation of Cunninghamella bigelovii sp. nov. CGMCC 8094 as a new endophytic oleaginous fungus from Salicornia bigelovii. Mycol Prog. 2015;14(3):11. https://doi.org/10.1007/s11557-015-1029-z
- Du P, Wu F, Tian XM. Three new species of Junghuhnia (Polyporales, Basidiomycota) from China. MycoKeys. 2020;72:1-16. https://doi.org/10.3897/mycokeys.72.51872
- White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-322.
- Wang CG, Liu SL, Wu F. Two new species of Perenniporia (Polyporales, Basidiomycota). MycoKeys. 2020;69:53-69. https://doi.org/10.3897/mycokeys.69.51652
- Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276-3278. https://doi.org/10.1093/bioinformatics/btu531
- Nie Y, Cai Y, Gao Y, et al. Three new species of Conidiobolus sensu stricto from plant debris in eastern China. MycoKeys. 2020;73:133-149. https://doi.org/10.3897/mycokeys.73.56905
- Nie Y, Yu DS, Wang CF, et al. A taxonomic revision of the genus Conidiobolus (Ancylistaceae, Entomophthorales): four clades including three new genera. MycoKeys. 2020;66:55-81. https://doi.org/10.3897/mycokeys.66.46575
- Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sunderland (UK): Sinauer Associates; 2002.
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. https://doi.org/10.1093/bioinformatics/btu033
- Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/sysbio/sys029
- Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696-704. https://doi.org/10.1080/10635150390235520
- Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
- Rambaut A. FigTree version 1.4.4 [Internet]. 2012. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/
- Ariyawansa HA, Hyde KD, Jayasiri SC, et al. Fungal diversity notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75(1):27-274. https://doi.org/10.1007/s13225-015-0346-5
- Deshpande KB, Mantri JM. A new species of Cunninghamella from India. Mycopathologia et Mycologia Applicata. 1966;28(4):342-344. https://doi.org/10.1007/BF02145109
- Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infec. 2009;15:2-9. https://doi.org/10.1111/j.1469-0691.2009.02972.x
- Hyde KD, Hongsanan S, Jeewon R, et al. Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80(1):1-270. https://doi.org/10.1007/s13225-016-0373-x
Cited by
- Taxonomy and Phylogeny of Four New Species in Absidia (Cunninghamellaceae, Mucorales) From China vol.12, 2021, https://doi.org/10.3389/fmicb.2021.677836
- The Gene Rearrangement, Loss, Transfer, and Deep Intronic Variation in Mitochondrial Genomes of Conidiobolus vol.12, 2021, https://doi.org/10.3389/fmicb.2021.765733