Acknowledgement
This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A1048259).
References
- Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015;35:3-11. https://doi.org/10.1055/s-0034-1397344
- Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014;15:1-19. https://doi.org/10.1093/bib/bbs075
- Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer: a brief overview. Adv Biol Regul 2015;57:1-9. https://doi.org/10.1016/j.jbior.2014.09.013
- van den Berg A, Mols J, Han J. RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta 2008;1779:668-77. https://doi.org/10.1016/j.bbagrm.2008.07.005
- Rajewsky N. MicroRNA target predictions in animals. Nat Genet 2006;38(Suppl):S8-13. https://doi.org/10.1038/ng1798
- Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today 2007;12:452-8. https://doi.org/10.1016/j.drudis.2007.04.002
- Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99-110. https://doi.org/10.1038/nrg2936
- Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S. Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 2015;59:117-24. https://doi.org/10.1016/j.molcel.2015.04.027
- Grammatikakis I, Gorospe M, Abdelmohsen K. Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013;14:1822-42. https://doi.org/10.3390/ijms14011822
- Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2015;6:8474-90. https://doi.org/10.18632/oncotarget.3523
- Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014;9:287-314. https://doi.org/10.1146/annurev-pathol-012513-104715
- Ali Syeda Z, Langden SS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci 2020;21:1723. https://doi.org/10.3390/ijms21051723
- Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8. https://doi.org/10.1038/nature03702
- Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010;17:633-41. https://doi.org/10.1038/cdd.2009.202
- Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009;23:2700-4. https://doi.org/10.1101/gad.1848209
- Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337
- Melet A, Song K, Bucur O, Jagani Z, Grassian AR, Khosravi-Far R. Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol 2008;615:47-79. https://doi.org/10.1007/978-1-4020-6554-5_4
- Fulda S, Debatin KM. Targeting inhibitor of apoptosis proteins (IAPs) for diagnosis and treatment of human diseases. Recent Pat Anticancer Drug Discov 2006;1:81-9. https://doi.org/10.2174/157489206775246539
- Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol 2015;7:a006080. https://doi.org/10.1101/cshperspect.a006080
- Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci 2005;118(Pt 2):265-7. https://doi.org/10.1242/jcs.01610
- Debatin KM, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004;23:2950-66. https://doi.org/10.1038/sj.onc.1207558
- Gerspach J, Pfizenmaier K, Wajant H. Therapeutic targeting of CD95 and the TRAIL death receptors. Recent Pat Anticancer Drug Discov 2011;6:294-310. https://doi.org/10.2174/157489211796957739
- Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 2006;13:1423-33. https://doi.org/10.1038/sj.cdd.4401950
- Fulda S, Debatin KM. Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets 2004;4:569-76. https://doi.org/10.2174/1568009043332763
- Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9:358-61. https://doi.org/10.1038/sj.cdd.4400989
- Walters J, Pop C, Scott FL, Drag M, Swartz P, Mattos C, et al. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 2009;424:335-45. https://doi.org/10.1042/BJ20090825
- Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300-4. https://doi.org/10.1038/40901
- Bae J, Donigian JR, Hsueh AJ. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 2003;278:5195-204. https://doi.org/10.1074/jbc.M201988200
- Natoni F, Diolordi L, Santoni C, Gilardini Montani MS. Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 2005;1745:318-29. https://doi.org/10.1016/j.bbamcr.2005.07.003
- Zhang X, Zhang X, Hu S, Zheng M, Zhang J, Zhao J, et al. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res 2017;45:5930-44. https://doi.org/10.1093/nar/gkx317
- Favreau AJ, Shaffiey F, Cross E, Sathyanarayana P. Mir-590 is a novel STAT5 regulated oncogenic miRNA and targets FasL in acute myeloid leukemia. Blood 2013;122:3811. https://doi.org/10.1182/blood.V122.21.3811.3811
- Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 2013;7:334-45. https://doi.org/10.1016/j.molonc.2012.10.011
- Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES. miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 2012;72:908-16. https://doi.org/10.1158/0008-5472.CAN-11-1460
- Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 2010;115:265-73. https://doi.org/10.1182/blood-2009-06-225987
- Huang X, Xiao S, Zhu X, Yu Y, Cao M, Zhang X, et al. miR196b-5p-mediated downregulation of FAS promotes NSCLC progression by activating IL6-STAT3 signaling. Cell Death Dis 2020;11:785. https://doi.org/10.1038/s41419-020-02997-7
- Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012;55:465-75. https://doi.org/10.1002/hep.24698
- Yamada N, Noguchi S, Kumazaki M, Shinohara H, Miki K, Naoe T, et al. Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia jurkat cells by modulating expression of fas-associated protein with death domain (FADD). Biochim Biophys Acta 2014;1843:590-602. https://doi.org/10.1016/j.bbamcr.2013.11.022
- Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 2010;24:1217-23.
- Fulda S. Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opin Ther Targets 2013;17:195-201. https://doi.org/10.1517/14728222.2013.736499
- Kim EA, Kim SW, Nam J, Sung EG, Song IH, Kim JY, et al. Inhibition of c-FLIPL expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 2016;7:31832-46. https://doi.org/10.18632/oncotarget.7149
- Czochor JR, Glazer PM. MicroRNAs in cancer cell response to ionizing radiation. Antioxid Redox Signal 2014;21:293-312. https://doi.org/10.1089/ars.2013.5718
- Yin W, Chen J, Wang G, Zhang D. MicroRNA-106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol Med Rep 2019;20:951-8.
- Park JK, Doseff AI, Schmittgen TD. MicroRNAs targeting caspase-3 and -7 in PANC-1 cells. Int J Mol Sci 2018;19:1206. https://doi.org/10.3390/ijms19041206
- Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, et al. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int 2018;18:64. https://doi.org/10.1186/s12935-018-0563-6
- Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, et al. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 2017;9:2105-19. https://doi.org/10.18632/oncotarget.23249
- Li Q, Ren P, Shi P, Chen Y, Xiang F, Zhang L, et al. MicroRNA-148a promotes apoptosis and suppresses growth of breast cancer cells by targeting B-cell lymphoma 2. Anticancer Drugs 2017;28:588-95. https://doi.org/10.1097/CAD.0000000000000498
- Lin YC, Lin JF, Tsai TF, Chou KY, Chen HE, Hwang TI. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J Surg 2017;40:396-406. https://doi.org/10.1016/j.asjsur.2016.07.001
- Zhang Y, Schiff D, Park D, Abounader R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One 2014;9:e91546. https://doi.org/10.1371/journal.pone.0091546
- Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014;5:e1132. https://doi.org/10.1038/cddis.2014.92
- English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013;5:a013227. https://doi.org/10.1101/cshperspect.a013227
- Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 2017;7:78. https://doi.org/10.3389/fonc.2017.00078
- Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006;7:880-5. https://doi.org/10.1038/sj.embor.7400779
- Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 2015;10:173-94. https://doi.org/10.1146/annurev-pathol-012513-104649
- Yu B, Wen L, Xiao B, Han F, Shi Y. Single prolonged stress induces ATF6 alpha-dependent endoplasmic reticulum stress and the apoptotic process in medial frontal cortex neurons. BMC Neurosci 2014;15:115. https://doi.org/10.1186/s12868-014-0115-5
- Zhou Y, Jia WK, Jian Z, Zhao L, Liu CC, Wang Y, et al. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol Med Rep 2017;16:2992-3000. https://doi.org/10.3892/mmr.2017.6934
- Xu G, Chen J, Jing G, Grayson TB, Shalev A. miR-204 targets PERK and regulates UPR signaling and β-cell apoptosis. Mol Endocrinol 2016;30:917-24. https://doi.org/10.1210/me.2016-1056
- Hiramatsu N, Chiang K, Aivati C, Rodvold JJ, Lee JM, Han J, et al. PERK-mediated induction of microRNA-483 disrupts cellular ATP homeostasis during the unfolded protein response. J Biol Chem 2020;295:237-49. https://doi.org/10.1074/jbc.RA119.008336
- Kong F, Zou H, Liu X, He J, Zheng Y, Xiong L, et al. miR-7112-3p targets PERK to regulate the endoplasmic reticulum stress pathway and apoptosis induced by photodynamic therapy in colorectal cancer CX-1 cells. Photodiagnosis Photodyn Ther 2020;29:101663. https://doi.org/10.1016/j.pdpdt.2020.101663
- Byrd AE, Brewer JW. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013;65:373-81. https://doi.org/10.1002/iub.1151
- Zhang WG, Chen L, Dong Q, He J, Zhao HD, Li FL, et al. Mmu-miR-702 functions as an anti-apoptotic mirtron by mediating ATF6 inhibition in mice. Gene 2013;531:235-42. https://doi.org/10.1016/j.gene.2013.09.005
- Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, et al. IRE1° cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 2012;338:818-22. https://doi.org/10.1126/science.1226191
- Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 2008;28:3943-51. https://doi.org/10.1128/MCB.00013-08
- Byrd AE, Aragon IV, Brewer JW. MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J Cell Biol 2012;196:689-98. https://doi.org/10.1083/jcb.201201077
- Behrman S, Acosta-Alvear D, Walter P. A CHOP-regulated microRNA controls rhodopsin expression. J Cell Biol 2011;192:919-27. https://doi.org/10.1083/jcb.201010055
- Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 2012;48:353-64. https://doi.org/10.1016/j.molcel.2012.08.025
- Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 2017;24:1184-95. https://doi.org/10.1038/cdd.2017.65
- Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019;44:771-86.
- MacEwan DJ. TNF ligands and receptors: a matter of life and death. Br J Pharmacol 2002;135:855-75. https://doi.org/10.1038/sj.bjp.0704549
- Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA- PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 2012;3:e390. https://doi.org/10.1038/cddis.2012.120
- Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 2018;15:199. https://doi.org/10.1186/s12974-018-1235-0
- Andalib A, Rashed S, Dehbashi M, Hajati J, Noorbakhsh F, Ganjalikhani-Hakemi M. The upregulation of hsa-mir-181b-1 and downregulation of its target CYLD in the late-stage of tumor progression of breast cancer. Indian J Clin Biochem 2020;35:312-21. https://doi.org/10.1007/s12291-019-00826-z
- Ye H, Liu X, Lv M, Wu Y, Kuang S, Gong J, et al. MicroRNA and transcription factor co-regulatory network analysis reveals miR19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res 2012;40:5201-14. https://doi.org/10.1093/nar/gks175
- Wang K, Liu F, Zhou LY, Ding SL, Long B, Liu CY, et al. miR874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis 2013;4:e709. https://doi.org/10.1038/cddis.2013.233
- Chen F, Zhu HH, Zhou LF, Wu SS, Wang J, Chen Z. Inhibition of c-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2010;23:1457-62.
- Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol 2011;225:232-42. https://doi.org/10.1002/path.2931
- Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015;6:7151. https://doi.org/10.1038/ncomms8151
- Zeng R, Huang J, Sun Y, Luo J. Cell proliferation is induced in renal cell carcinoma through miR-92a-3p upregulation by targeting FBXW7. Oncol Lett 2020;19:3258-68.
- Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: a comprehensive review. Biomed Pharmacother 2018;104:485-95. https://doi.org/10.1016/j.biopha.2018.05.007
- Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1-32. https://doi.org/10.1007/978-3-642-00302-8_1
- Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007;129:983-97. https://doi.org/10.1016/j.cell.2007.03.045
- Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10:51-64. https://doi.org/10.1016/j.ccr.2006.06.001
- Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007;26:1840-51. https://doi.org/10.1038/sj.onc.1209992
- Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960-76. https://doi.org/10.1016/j.cell.2017.02.004
- Rabanal-Ruiz Y, Otten EG, Korolchuk VI. mTORC1 as the main gateway to autophagy. Essays Biochem 2017;61:565-84. https://doi.org/10.1042/EBC20170027
- Yin H, Ma J, Chen L, Piao S, Zhang Y, Zhang S, et al. miR-99a enhances the radiation sensitivity of non-small cell lung cancer by targeting mTOR. Cell Physiol Biochem 2018;46:471-81. https://doi.org/10.1159/000488615
- Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, et al. MicroRNA-193a3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 2015;34:413-23. https://doi.org/10.1038/onc.2013.574
- Callegari E, D'Abundo L, Guerriero P, Simioni C, Elamin BK, Russo M, et al. miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model. Mol Ther Nucleic Acids 2018;11:485-93. https://doi.org/10.1016/j.omtn.2018.04.002
- Ge H, Li B, Hu WX, Li RJ, Jin H, Gao MM, et al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int J Clin Exp Pathol 2015;8:800-5.
- Zhao G, Zhang JG, Liu Y, Qin Q, Wang B, Tian K, et al. miR148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2013;12:83-93. https://doi.org/10.1158/1535-7163.MCT-12-0534-T
- Li H, Wang Y, Song Y. MicroRNA-26b inhibits the immune response to Mycobacterium tuberculosis (M.tb) infection in THP-1 cells via targeting TGFβ-activated kinase-1 (TAK1), a promoter of the NF-κB pathway. Int J Clin Exp Pathol 2018; 11:1218-27.
- Korkmaz G, le Sage C, Tekirdag KA, Agami R, Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 2012;8:165-76. https://doi.org/10.4161/auto.8.2.18351
- Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, et al. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun 2017;492:480-6. https://doi.org/10.1016/j.bbrc.2017.08.070
- Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012;21:532-46. https://doi.org/10.1016/j.ccr.2012.02.019
- Zhang S, Gao L, Thakur A, Shi P, Liu F, Feng J, et al. miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2. Tumour Biol 2016;37:11177-86. https://doi.org/10.1007/s13277-016-4906-4
- An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, et al. miR-23b3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis 2015;6:e1766. https://doi.org/10.1038/cddis.2015.123
- Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol 2017;7:65.
- Sun T, Li MY, Li PF, Cao JM. MicroRNAs in cardiac autophagy: small molecules and big role. Cells 2018;7:104. https://doi.org/10.3390/cells7080104
- Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019;45:844-56. https://doi.org/10.1002/biof.1555
- Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, et al. miR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 2014;5:e1029. https://doi.org/10.1038/cddis.2013.556
- Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 2012;72:3631-41. https://doi.org/10.1158/0008-5472.CAN-12-0667
Cited by
- Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke vol.12, 2021, https://doi.org/10.3389/fneur.2021.746486