DOI QR코드

DOI QR Code

Extract from the branches of Rhamnus yoshinoi exerts anti-cancer effects on human prostate cancer cells through Wnt/β-catenin proteasomal degradation and identification of compounds by GC/MS

짝자래나무[Rhamnus yoshinoi] 가지 추출물에 의한 전립선암세포의 Wnt/β-catenin 분해 유도 활성 및 GC/MS 분석

  • Kang, Yeongyeong (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Eo, Hyun Ji (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Da Som (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Youngki (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • 강연경 (국립산림과학원 산림약용자원연구소) ;
  • 어현지 (국립산림과학원 산림약용자원연구소) ;
  • 김다솜 (국립산림과학원 산림약용자원연구소) ;
  • 박영기 (국립산림과학원 산림약용자원연구소) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소)
  • Received : 2021.04.30
  • Accepted : 2021.06.11
  • Published : 2021.06.30

Abstract

We evaluated the anti-cancer activity against human prostate cancer cells and the associated molecular mechanism of extracts from the branches of Rhamnus yoshinoi (RYB). Treatment with RYB suppressed viability of human prostate cancer cells (PC-3) and decreased protein levels of both β-catenin and T-cell factor 4 (TCF4). This was reflected in reduced TCF4 mRNA, but not decreased β-catenin mRNA. PC-3 cells were pretreated with the proteosome inhibitor MG132 before treatment with RYB, which blocked RYB-mediated down regulation of β-catenin in PC-3 cells, thus confirming that RYB promotes the proteasomal degradation of β-catenin. RYB induced β-catenin phosphorylation, and GSK-3β inhibition by LiCl blocked the phosphorylation and proteasomal degradation of β-catenin by RYB. These results suggest that GSK-3β may be an important upstream kinase for RYB-mediated regulation of β-catenin. Finally, GC/MS analysis of RYB identified 18 compounds. Based on these findings, RYB shows potential for development as a therapeutic agent for prostate cancer.

본 연구에서는 갈매나무과에 속하는 Rhamnus yoshinoi (RY, 짝자래나무) 가지 부위의 70% 에탄올 추출물을 이용하여 전립선암세포의 항암 활성을 규명하고자 하였다. 짝자래 나무 가지 추출물을 전립선암 세포 PC-3에 처리하여 β-catenin과 TCF4의 단백질 수준 감소를 확인하였다. 이후, β-catenin과 TCF4의 mRNA 발현을 조사한 결과 β-catenin은 감소하지 않았고, TCF4는 감소하였다. 이를 통해, β-catenin mRNA의 발현에는 영향이 없지만, TCF4 mRNA 발현은 억제하는 것으로 나타났다. 단백질 분해효소억제제인 MG132를 처리한 전립선암 세포 PC-3에서 단백질 수준 확인을 통해 β-catenin의 단백질 분해를 유도할 수 있음을 확인하였다. 또한 전립선암 세포 PC-3에서 짝자래나무 가지 추출물의 GSK-3β 유도 β-catenin 단백질 분해 Kinase 구명과 β-catenin 인산화에 영향을 미치는 것을 확인하였다. 이상의 연구 결과로 짝자래나무 가지 추출물은 GSK-3β 의존성 Wnt/β-catenin 단백질의 분해를 통해 전립선암의 생육 억제와 관련이 있는 것으로 확인된다. 또한 짝자래나무 가지 추출물에서 항암활성과 관련된 활성물질이 있는 것으로 확인되었다. 본 결과는 전립선암의 항암제 개발을 위한 소재로 짝자래나무 가지 추출물의 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2021년도 국립산림과학원 일반연구과제 '갈매나무과 식물의 항염증 물질 탐색 및 약리기전 연구(과제번호: FP0400-2019-01)' 의해 이루어진 것으로 이에 감사드립니다.

References

  1. Campos C, Sotomayor P, Jerez D, Gonzalez J, Schmidt C, Schmidt K, Banzer W, Godoy AS (2018) Exercise and prostate cancer: from basic science to clinical applications. The Prostate 78(9): 639-645 https://doi.org/10.1002/pros.23502
  2. Chan P, Tomlinson B (2000) Antioxidant effects of Chinese traditional medicine: focus on trilinolein isolated from the Chinese herb sanchi (Panax pseudoginseng). J Clin Pharmacol 40:457-461 https://doi.org/10.1177/00912700022009215
  3. Chou PY, Huang GJ, Pan CH, Chien YC, Chen YY, Wu CH, Sheu MJ, Cheng HC (2011) Trilinolein inhibits proliferation of human non-small cell lung carcinoma A549 through the modulation of PI3K/Akt pathway. Am J Chin Med 39:803-815 https://doi.org/10.1142/S0192415X11009214
  4. Das UN (1990) Gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid as potential anticancer drugs. Nutrition 6:429-434
  5. Giulitti F, Petrungaro S, Mandatori S, Tomaipitinca L, Franchis V, D'Amore A, Filippini A, Gaudio E, Ziparo E, Giampietri C (2021) Antitumor effect of oleic acid in hepatocellular carcinoma cell lines via autophagy reduction. Front Cell Dev Biol 9(629182):1-16
  6. Gonor KV, Pogozheva AV, Derbeneva SA, Mal'tsev GIu, Trushina EN, Mustafina OK (2006) The influence of a diet with including amaranth oil on antioxidant and immune status in patients with ischemic heart disease and hyperlipoproteidemia. Vopr Pitan 75(6):30-33
  7. Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22(5):2587-2590
  8. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382): 1509-1512 https://doi.org/10.1126/science.281.5382.1509
  9. Hoda S, Gupta L, Shankar J, Gupta AK, and Vijayaraghavan P (2020) cis-9-hexadecenal, a natural compound targeting cell wall organization, critical growth factor, and virulence of Aspergillus fumigatus. ACS Omega 5:10077-10088 https://doi.org/10.1021/acsomega.0c00615
  10. Huang SS, Deng JS, Lin JG, Lee CY, Huang GJ (2014) Anti-inflammatory effects of trilinolein from Panax notoginseng through the suppression of NF-κB and MAPK expression and proinflammatory cytokine expression. Am J Chin Med 42(6): 1485-1506 https://doi.org/10.1142/S0192415X14500931
  11. Jeong JB, Jeong HJ (2010) 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells. Biochem Biophys Res Commun 400:752-757 https://doi.org/10.1016/j.bbrc.2010.08.142
  12. Jiang J, Cao DH, Tsukamoto T, Wang GQ, Jia ZF, Suo J, Cao XY (2013) Anticancer effects of 4-vinyl-2,6-dimethoxyphenol (canolol) against SGC-7901 human gastric carcinoma cells. Oncol Lett 5:1562-1566 https://doi.org/10.3892/ol.2013.1230
  13. Jumina, Nurmala A, Fitria A, Pranowo D, Sholikhah EN, Kurniawan YS, Kuswandi B (2018) Monomyristin and monopalmitin derivatives: synthesis and evaluation as potential antibacterial and antifungal agents. Molecules 23(3141):1-10
  14. Kim CH, So JH, Park HG, Madusanka N, Deekshitha P, Bhattacharjee S, Choi HK (2019) Analysis of texture features and classifications for the accurate diagnosis of prostate cancer. Journal of Korea Multimedia Society 22(8):832-843 https://doi.org/10.9717/KMMS.2019.22.8.832
  15. Kim DH, Han SI, Go B, Oh UH, Kim CS, Jung YH, Lee J, Kim JH (2019) 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Res. 39(12):6685-6691 https://doi.org/10.21873/anticanres.13883
  16. Kim HN, Kim JD, Son HJ, Park GH, Eo HJ, Jeong JB (2019) Anti-Cancer activity of the leave extracts of Rodgersia podophylla through β-catenin proteasomal degradation in human cancer cells. Korean J. Plant Res. 32(5):442-447
  17. Kim HN, Park GH, Kim JD, Park SB, Eo HJ, Jeong JB (2019) Effect of the extracts from the leaves and branches of Sageretia thea on β-catenin proteasomal degradation in human colorectal and lung cancer cells. Korean J Plant Res 32 : 153-159 https://doi.org/10.7732/KJPR.2019.32.2.153
  18. Kim HO (2018) Antioxidant activity and anti-wrinkle effect of Rhamnus yoshinoi Methanol Extract. Graduate School of Keimyung University
  19. Kim HO, Shin KR, Jang BC, Kim YC (2019) Action mechanism of anti-wrinkle effect of Rhamnus yoshinoi methanol extract in human dermal fibroblast and keratinocyte cell lines. Toxicol Res 36(1):69-77 https://doi.org/10.1007/s43188-019-00007-3
  20. Kojima M, Tachibana N, Yamahira T, Seino S, Izumisawa A, Sagi N, Arishima T, Kohno M, Takamatsu K, Hirotsuka M, Ikeda I (2010) Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats. Lipids Health Dis 9(77):(1-6) https://doi.org/10.1186/1476-511X-9-1
  21. Korea Central Cancer Registry, National Cancer Center. Annual report of cancer statistics in Korea in 2017, Ministry of Health and Welfare, 2019
  22. Li LF, Wei ZJ, Hong H, Jiang B (2014) Abnormal β-catenin immunohistochemical expression as a prognostic factor in gastric cancer: A meta-analysis. World J Gastroenterol 20:12312-12321
  23. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, Clevers H (2012) Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149(6):1245-1256 https://doi.org/10.1016/j.cell.2012.05.002
  24. Lu XF, He GQ, Yu HN, Ma Q, Shen SR, Das UN (2010) Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes. J Biomed Biotechnol 11(12):923-930
  25. Neth P, Ciccarella M, Egea V, Hoelters J, Jochum M, Ries C (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892-1903 https://doi.org/10.1634/stemcells.2005-0503
  26. Neth P, Ries C, Karow M, Egea V, Ilmer M, Jochum M (2007) The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 3:18-29 https://doi.org/10.1007/s12015-007-0001-y
  27. Newmark HL (1997) Squalene, olive oil, and cancer risk: a review and hypothesis. Cancer Epidemiol. Biomarkers Prev 6:1101-1103
  28. Nile AH, Mukund S, Stanger K, Wang W, Hannoush RN (2017) Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U. S. A. 114:4147-4152 https://doi.org/10.1073/pnas.1618293114
  29. Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985-999 https://doi.org/10.1016/j.cell.2017.05.016
  30. Oh BY, Ko SH, Kang SH, Paik WK, Yoo KO et al. (2016) Distribution maps of vascular plants in Korea. Korea National Arboretum. Pocheon, Korea
  31. Ohkuma T, Otagiri K, Tanaka S, Ikekawa T (1983) Intensification of host's immunity by squalene in sarcoma 180 bearing ICR mice. Journal of Pharmacobio-Dynamic 6:148-151 https://doi.org/10.1248/bpb1978.6.148
  32. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, Kwak JH, Lee SJ, Bae YS, Choi YW (2014) Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int. Immunopharmacol 19:253-261 https://doi.org/10.1016/j.intimp.2014.01.017
  33. Pyun Jong Hyun, Kang SH, Kim JY, Shin JE, Jeong IG, Kim JW, No TI, Oh JJ, Yu JH, Chung HS, Jeon SS (2020) Survey results on the perception of prostate-specific antigen and prostate cancer screening among the general public. Korean J Urol Oncol 18(1):40-46 https://doi.org/10.22465/kjuo.2020.18.1.40
  34. Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19:287-290 https://doi.org/10.1093/carcin/19.2.287
  35. Rao MK, Achaya KT (1968) Antioxidant property of a cholesterol precursor, squalene. J Am Oil Chem Soc 45:296 https://doi.org/10.1007/BF02652431
  36. Sakthivel R, Malar DS, Devi KP (2018) Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed. Pharmacother. 150:742-752 https://doi.org/10.1016/j.biopha.2018.06.035
  37. Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ (2013) Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 92:114-121 https://doi.org/10.1177/0022034512467352
  38. Schmalhofer O, Brabletz S, Brabletz TE (2009) Cadherin, betacatenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28:151-166 https://doi.org/10.1007/s10555-008-9179-y
  39. Shang S, Hua F, Hu ZW (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972-33989 https://doi.org/10.18632/oncotarget.15687
  40. Shapla UM, Solayman M, Alam N, Khalil MI, Gan SH (2018) 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J 12(35):1-18 https://doi.org/10.1186/s13065-017-0364-3
  41. Shen JK (2018) "Prostate Cancer Pathology: Recent Updates and Controversies," Missouri Medicine 115(2) pp 151-155
  42. Sim BR, Nam YS, Lee JB (2019) Regulation of Wnt/β-catenin signal transduction in HT-29 colon cancer cells by a Rhododendron brachycarpum fraction. Journal of Life Science 291(8):871-878
  43. Stoessl A, Fisch MH, Arditti J (1980) Monolinolein as a selective fungus inhibitor from Cymbidium, Orchidaceae. Mycopathologia 70(3):131-134 https://doi.org/10.1007/BF00443022
  44. Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19:1438-1449 https://doi.org/10.1038/nm.3336
  45. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells Nature 398:422-426 https://doi.org/10.1038/18884
  46. Theresa JS, Yang GY, Seril DN, Liao J, Kim SB (1998) Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanoneinduced lung tumorigenesis by dietary olive oil and squalene. Carcinogenesis 19(4):703-706 https://doi.org/10.1093/carcin/19.4.703
  47. Virk MS, Issenberg P (1986) Effects of phenol and 2, 6-dimethoxyphenol (syringol) on in vivo formation of N -nitrosomorpholine in rats. Carcinogenesis 7(6):867-870 https://doi.org/10.1093/carcin/7.6.867
  48. Yoon JH (2020) A review of therapeutic exercise strategies for prostate cancer and benign prostate hyperplasia. Korean Journal of Sport Science 31(1):1-10 https://doi.org/10.24985/KJSS.2020.31.1.1
  49. Yu X, Zhao M, Liu F, Zeng S, Hu J (2013) Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Res Int 51:397-403 https://doi.org/10.1016/j.foodres.2012.12.044
  50. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461-1473 https://doi.org/10.1038/onc.2016.304