DOI QR코드

DOI QR Code

알츠하이머병 및 경도인지장애 환자에서 내측두엽 위축, 대뇌백질병변, 신경인지기능과 일상생활 수행능력과의 연관성

Association between Medial Temporal Atrophy, White Matter Hyperintensities, Neurocognitive Functions and Activities of Daily Living in Patients with Alzheimer's Disease and Mild Cognitive Impairment

  • 안민혁 (인제대학교 의과대학 일산백병원 정신건강의학교실) ;
  • 김현 (인제대학교 의과대학 일산백병원 정신건강의학교실) ;
  • 이강준 (인제대학교 의과대학 일산백병원 정신건강의학교실)
  • An, Min hyuk (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine) ;
  • Kim, Hyun (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine) ;
  • Lee, Kang Joon (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine)
  • 투고 : 2021.05.13
  • 심사 : 2021.06.25
  • 발행 : 2021.06.30

초록

연구목적 본 연구는 알츠하이머병 및 경도인지장애 환자에서 뇌의 퇴행성 변화 (내측두엽 위축, 대뇌백질병변) 및 신경인지기능과 일상생활 수행능력과의 연관성을 살펴보고자 하였다. 방 법 본 연구는 단면 연구로서, 알츠하이머병 및 경도인지장애로 진단받은 111명을 대상으로 하였다. 내측두엽 위축은 표준화된 시각 기반 척도(Scheltens scale)에 의해 평가하였으며, 대상군을 두 그룹으로 분류하였다. 일상생활 수행능력은 한국어판 블레스트 치매 척도-일상생활 수행능력(Korean version of Blessed Dementia Scale-Activity of daily living, BDS-ADL)으로 평가하였으며 신경인지기능은 The Korean version of the consortium to establish a registry for Alzheimer's disease (CERAD-K)로 평가하였다. 내측두엽 위축의 정도에 따른 일상생활 수행능력의 차이를 보기 위해 독립표본 t-test를 시행하였으며, 일상생활 수행능력과 신경인지기능과의 상관관계를 분석하기 위해 피어슨 상관분석 및 계층적 다중회귀분석을 시행하였다. 결 과 내측두엽 위축이 심할수록, 그리고 단어목록재인 검사 점수가 낮을수록 BDS-ADL 점수가 높았다(p<0.05). 계층적 다중회귀분석 결과 MMSE-K, 단어목록 재인검사 점수가 BDS-ADL의 유의한 예측인자로 나타났다(Adjusted R2=0.442, F=44.611, p<0.001). 결 론 알츠하이머병과 경도인지장애 환자에서 일상생활 수행능력은 내측두엽 위축 및 단어목록재인 검사 점수와 유의한 상관관계를 보였다. 일상생활 수행능력과 관련된 인자를 분석한 본 연구는 임상 실제에서 유용한 정보를 제공할 것으로 생각된다. 일상생활 수행능력과 뇌의 구조 및 기능과의 연관성에 대해서 추가적인 연구가 필요할 것으로 보인다.

Objectives : The aim of this study was to compare activities of daily living (ADLs) according to degenerative changes in brain [i.e., medial temporal lobe atrophy (MTA), white matter hyperintensities] and to examine the association between neurocognitive functions and ADLs in Korean patients with dementia due to Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods : Participants were 111 elderly subjects diagnosed with AD or MCI in this cross-sectional study. MTA in brain MRI was rated with standardized visual rating scales (Scheltens scale) and the subjects were divided into two groups according to Scheltens scale. ADLs was evaluated with the Korean version of Blessed Dementia Scale-Activity of daily living (BDS-ADL). Neurocognitive function was evaluated with the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease assessment packet (CERAD-K). Independent t-test was performed to compare ADLs with the degree of MTA. Pearson correlation and hierarchical multiple regression analyses were performed to analyze the relationship between ADLs and neurocognitive functions. Results : The group with high severity of the MTA showed significantly higher BDS-ADL scores (p<0.05). The BDS-ADL score showed the strongest correlation with the word list recognition test among sub-items of the CERAD-K test (r=-0.568). Findings from the hierarchical multiple regression analysis revealed that the scores of MMSE-K and word list recognition test were factors that predict ADLs (F=44.611, p<0.001). Conclusions : ADLs of AD and MCI patients had significant association with MTA. Our study, which identifies factors correlated with ADLs can provide useful information in clinical settings. Further evaluation is needed to confirm the association between certain brain structures and ADLs.

키워드

참고문헌

  1. Lee JS, Kang MJ, Nam HJ, Kim YJ, Lee OJ, Kim KW. Korean dementia observatory 2019. Annual Report. Seoul: Central Dementia Center Service; 2020 Feb. Report No. NIDR-1902-0028.
  2. Henskens M, Nauta IM, Vrijkotte S, Drost KT, Milders MV, Scherder EJ. Mood and behavioral problems are important predictors of quality of life of nursing home residents with moderate to severe dementia: a cross-sectional study. PLoS One 2019;14:e0223704. https://doi.org/10.1371/journal.pone.0223704
  3. Parrotta I, De Mauleon A, Abdeljalil AB, Barreto PDS, Lethin C, Veerbek H, Stephan A, Saks K, Zabalegui A, Martin MES. Depression in people with dementia and caregiver outcomes: Results from the European right time place care study. J Am Med Dir Assoc 2020;21:872-878.e1. https://doi.org/10.1016/j.jamda.2020.02.023
  4. Suh GH, Knapp M, Kang CJ. The economic costs of dementia in Korea, 2002. Int J Geriatr Psychiatry 2006;21:722-728. https://doi.org/10.1002/gps.1552
  5. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J. Dementia prevention, intervention, and care. The Lancet 2017;390:2673-2734. https://doi.org/10.1016/S0140-6736(17)31363-6
  6. Thies W, Bleiler L. Alzheimer's Association (2013) Alzheimer's disease facts and figures. Alzheimers Dement 2013:208-245.
  7. Elahi FM, Miller BL. A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol 2017;13:457-476. https://doi.org/10.1038/nrneurol.2017.96
  8. Juva K, Makela M, Erkinjuntti T, Sulkava R, Yukoski R, Valvanne J, Tilvis R. Functional assessment scales in detecting dementia. Age Ageing 1997;26:393-400. https://doi.org/10.1093/ageing/26.5.393
  9. Morris JC, McKeel DW, Storandt M, Rubin EH, Price JL, Grant EA, Ball MJ, Berg L. Very mild Alzheimer's disease: informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology 1991;41:469-469. https://doi.org/10.1212/WNL.41.4.469
  10. Rubin EH, Morris JC, Grant EA, Vendegna T. Very mild senile dementia of the Alzheimer type: I. Clinical assessment. Arch Neurol 1989;46:379-382. https://doi.org/10.1001/archneur.1989.00520400033016
  11. Yilmaz R, Pilotto A, Roeben B, Preische O, Suenkel U, Heinzel S, Metzger FG, Laske C, Maetzler W, Berg D. Structural ultrasound of the medial temporal lobe in Alzheimer's disease. Ultraschall Med 2017;38:294-300. https://doi.org/10.1055/s-0042-107150
  12. Kim WJ, Yang DW. Micro-vascular diseases of white matter. Dement Neurocogn Disord 2012;11:79-86. https://doi.org/10.12779/dnd.2012.11.3.79
  13. Debette S, Markus H. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666. https://doi.org/10.1136/bmj.c3666
  14. Verdelho A, Madureira S, Moleiro C, Ferro J, Santos C, Erkinjuntti T, Pantoni L, Fazekas F, Visser M, Waldemar G. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology 2010;75:160-167. https://doi.org/10.1212/WNL.0b013e3181e7ca05
  15. Kang DW, Lim HK. Current knowledge and clinical application of brain imaging in Alzheimer's disease. J Korean Neuropsychiatr Assoc 2018;57:12-22. https://doi.org/10.4306/jknpa.2018.57.1.12
  16. Cahn-Weiner DA, Farias ST, Julian L, Harvey DJ, Kramer JH, Reed BR, Mungas D, Wetzel M, Chui H. Cognitive and neuroimaging predictors of instrumental activities of daily living. J Int Neuropsychol Soc 2007;13:747-757. https://doi.org/10.1017/S1355617707070853
  17. Jutten RJ, Dicks E, Vermaat L, Barkhof F, Scheltens P, Tijms BM, Sikkes SAM. Impairment in complex activities of daily living is related to neurodegeneration in Alzheimer's disease-specific regions. Neurobiol Aging 2019;75:109-116. https://doi.org/10.1016/j.neurobiolaging.2018.11.018
  18. Verlinden VJA, Van Der Geest JN, Hofman A, Niessen WJ, Van Der Lugt A, Vernooij MW, Ikram MA. Brain MRI-markers Associate Differentially with Cognitive Versus Functional Decline Leading to Dementia. J Am Geriatr Soc 2017;65:1258-1266. https://doi.org/10.1111/jgs.14775
  19. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. https://doi.org/10.1212/WNL.34.7.939
  20. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004;256:240-246. https://doi.org/10.1111/j.1365-2796.2004.01380.x
  21. Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995;242:557-560. https://doi.org/10.1007/BF00868807
  22. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 1997;9:173-176. https://doi.org/10.1017/S1041610297004870
  23. Ferreira D, Cavallin L, Larsson EM, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S. Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in A lzheimer's disease and mild cognitive impairment. J Intern Med 2015;278:277-290. https://doi.org/10.1111/joim.12358
  24. Velickaite V, Ferreira D, Cavallin L, Lind L, Ahlstrom H, Kilander L, Westman E, Larsson E-M. Medial temporal lobe atrophy ratings in a large 75-year-old population-based cohort: gender-corrected and education-corrected normative data. Eur Radiol 2018;28:1739-1747. https://doi.org/10.1007/s00330-017-5103-6
  25. Choi L, Joo SH, Lee CU, Paik IH. Association between Global cortical atrophy, medial temporal atrophy, white matter hyperintensities and cognitive functions in Korean Alzheimer's disease patients. Korean J Biol Psychiatry 2015;22:140-148.
  26. Kono I, Mori S, Nakajima K, Nakagawa M, Watanabe Y, Kizu O, Yamada K, Sakai Y. Do white matter changes have clinical significance in Alzheimer's disease? Gerontology 2004;50:242-246. https://doi.org/10.1159/000078353
  27. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. Am J Roentgenol 1987;149:351-356. https://doi.org/10.2214/ajr.149.2.351
  28. Lee JH, Lee KU, Lee DY, Kim KW, Jhoo JH, Kim JH, Lee KH, Kim SY, Han SH, Woo JI. Development of the Korean Version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K) clinical and neuropsychological assessment batteries. J Gerontol B Psychol Sci Soc Sci 2002;57:47-53.
  29. Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 1968;114:797-811. https://doi.org/10.1192/bjp.114.512.797
  30. Ha E, Kim K. Factors that influence activities of daily living in the elderly with probable dementia. J Psychiatr Ment Health Nurs 2014;21:447-454. https://doi.org/10.1111/jpm.12110
  31. Cahn-Weiner DA, Farias ST, Julian L, Harvey DJ, Kramer JH, Reed BR, Mungas D, Wetzel M, Chui H. Cognitive and neuroimaging predictors of instrumental activities of daily living. J Int Neuropsychol Soc 2007;13:747-757. https://doi.org/10.1017/S1355617707070853
  32. Farias ST, Park LQ, Harvey DJ, Simon C, Reed BR, Carmichael O, Mungas D. Everyday cognition in older adults: associations with neuropsychological performance and structural brain imaging. J Int Neuropsychol Soc 2013;19:430-441. https://doi.org/10.1017/S1355617712001609
  33. Matthews BR. Memory dysfunction. Neurology 2015;21:613-626.
  34. Stout JC, Bondi MW, Jernigan TL, Archibald SL, Delis DC, Salmon DP. Regional cerebral volume loss associated with verbal learning and memory in dementia of the Alzheimer type. Neuropsychology 1999;13:188-197. https://doi.org/10.1037/0894-4105.13.2.188
  35. Beck IR, Gagneux-Zurbriggen A, Berres M, Taylor KI, Monsch AU. Comparison of verbal episodic memory measures: consortium to establish a registry for Alzheimer's disease-Neuropsychological Assessment Battery (CERAD-NAB) versus California Verbal Learning Test (CVLT). Arch Clin Neuropsychol 2012;27:510-519. https://doi.org/10.1093/arclin/acs056
  36. De Paula JJ, Diniz BS, Bicalho MA, Albuquerque MR, Nicolato R, De Moraes EN, Romano-Silva MA, Malloy-Diniz LF. Specific cognitive functions and depressive symptoms as predictors of activities of daily living in older adults with heterogeneous cognitive backgrounds. Front Aging Neurosci [serial online]. 2015;7. Available from: https://dx.doi.org/10.3389/fnagi.2015.00139.
  37. Brown PJ, Devanand D, Liu X, Caccappolo E. Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease. Arch Gen Psychiatry 2011;68:617-626. https://doi.org/10.1001/archgenpsychiatry.2011.57
  38. Jefferson AL, Byerly LK, Vanderhill S, Lambe S, Wong S, Ozonoff A, Karlawish JH. Characterization of activities of daily living in individuals with mild cognitive impairment. Am J Geriatr Psychiatry 2008;16:375-383. https://doi.org/10.1097/JGP.0b013e318162f197
  39. Tuokko H, Morris C, Ebert P. Mild cognitive impairment and everyday functioning in older adults. Neurocase 2005;11:40-47. https://doi.org/10.1080/13554790490896802
  40. Garrido G, Furuie S, Buchpiguel C, Bottino C, Almeida O, Cid C, Camargo C, Castro C, Glabus M, Busatto G. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer's disease: a combined MRI and SPECT study. J Neurol Neurosurg Psychiatry 2002;73:508-516. https://doi.org/10.1136/jnnp.73.5.508
  41. Farias ST, Harrell E, Neumann C, Houtz A. The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer's disease: ecological validity of neuropsychological tests. Arch Clin Neuropsychol 2003;18:655-672. https://doi.org/10.1093/arclin/18.6.655
  42. Nedelska Z, Andel R, Laczo J, Vlcek K, Horinek D, Lisy J, Sheardova K, Bures J, Hort J. Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci USA 2012;109:2590-2594. https://doi.org/10.1073/pnas.1121588109
  43. Jefferson AL, Barakat LP, Giovannetti T, Paul RH, Glosser G. Object perception impairments predict instrumental activities of daily living dependence in Alzheimer's disease. J Clin Exp Neuropsychol 2006;28:884-897. https://doi.org/10.1080/13803390591001034
  44. Sadek JR, Stricker N, Adair JC, Haaland KY. Performance-based everyday functioning after stroke: relationship with IADL questionnaire and neurocognitive performance. J Int Neuropsychol Soc 2011;17:832-840. https://doi.org/10.1017/S1355617711000841
  45. Inzitari D, Simoni M, Pracucci G, Poggesi A, Basile AM, Chabriat H, Erkinjuntti T, Fazekas F, Ferro JM, Hennerici M. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LA-DIS study. Arch Intern Med 2007;167:81-88. https://doi.org/10.1001/archinte.167.1.81
  46. Lee KM. Patterns of memory impairment. Ann Clin Neurophysiol 2000;2:172-178.
  47. Duffy JD, Campbell JJ. The regional prefrontal syndromes: a theoretical and clinical overview. J Neuropsychiatry Clin Neurosci 1994;6:379-387. https://doi.org/10.1176/jnp.6.4.379
  48. Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 2002;53:647-654. https://doi.org/10.1016/S0022-3999(02)00428-2
  49. Jekel K, Damian M, Wattmo C, Hausner L, Bullock R, Connelly PJ, Dubois B, Eriksdotter M, Ewers M, Graessel E, Kramberger MG, Law E, Mecocci P, Molinuevo JL, Nygard L, Olde Rikkert MG, Orgogozo JM, Pasquier F, Peres K, Salmon E, Sikkes SA, Sobow T, Spiegel R, Tsolaki M, Winblad B, Frolich L. Mild cognitive impairment and deficits in instrumental activities of daily living: a systematic review. Alzheimers Res Ther 2015;7:1-20. https://doi.org/10.1186/s13195-014-0092-z
  50. Jeong EH, Kim HY, Lee JH. Can we further divide amnestic mild cognitive impairment based on the pattern of memory deficit?: a preliminary study. Dement Neurocogn Disord 2012;11:18-24. https://doi.org/10.12779/dnd.2012.11.1.18
  51. Santos VD, Thomann PA, Wustenberg T, Seidl U, Essig M, Schroder J. Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2011;23:411-420. https://doi.org/10.3233/JAD-2010-100156
  52. Wolk DA, Dickerson BC. Fractionating verbal episodic memory in Alzheimer's disease. NeuroImage 2011;54:1530-1539. https://doi.org/10.1016/j.neuroimage.2010.09.005