DOI QR코드

DOI QR Code

Comparative Analysis of Mitochondrial Genomes of the Genus Sebastes (Scorpaeniformes, Sebastidae) Inhabiting the Middle East Sea, Korea

한국 동해 중부해역에 서식하는 볼락속(Sebastes) 어류의 미토콘드리아 유전체 비교분석

  • Jang, Yo-Soon (East Sea Environment Research Center, Korea Institute of Ocean Science & Technology) ;
  • Hwang, Sun Wan (Dokdo Research Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Eun Kyung (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Sung (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
  • 장요순 (한국해양과학기술원 동해환경연구센터) ;
  • 황선완 (한국해양과학기술원 독도전문연구센터) ;
  • 이은경 (한국해양과학기술원 해양생태연구센터) ;
  • 김성 (한국해양과학기술원 해양생태연구센터)
  • Received : 2021.11.12
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

Sebastes minor, Sebastes trivittatus, Sebastes owstoni, and Sebastes steindachneri are indigenous fish species inhabiting the central part of the East Sea, Korea. In order to understand the molecular evolution of these four rockfishes, we sequenced the complete mitochondrial genomes (mitogenomes) of S. minor and S. trivittatus. To further analyze the phylogeny of Sebastes species, the mitogenomes of 16 rockfishes were comparatively investigated. The complete mitochondrial DNA (mtDNA) nucleotide sequences of S. minor and S. trivittatus were 16,408 bp and 16,409 bp in length, respectively. A total of 37 genes were found in mtDNA of S. minor and S. trivittatus, including 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which exhibited similar characters with other Sebastes species in the East Sea, Korea. In addition, we detected a conserved motif "ATGTA" in the control region of the four Sebastes species, but no tandem repeat units. Comparative analyses of the congeneric mitochondrial genomes were performed, which showed that control regions were more variable than the concatenated protein-coding genes. As a result of analysing phylogenetic relationships of four Sebastes species by using concatenated nucleotide sequences of 13 protein-coding genes, S. minor, S. trivittatus, S. owstoni and S. steindachneri were clustered into three clades. The phylogenetic tree exhibited that S. minor and S. steindachneri shared a closer relationship, whereas S. trivittatus and S. vulpes formed another distinct clade. Our results contribute to a better understanding of evolutionary patterns of Sebastes species inhabiting the middle East Sea, Korea.

좀볼락 (Sebastes minor), 세줄볼락 (Sebastes trivittatus), 황볼락 (Sebastes owstoni) 및 노랑볼락 (Sebastes steindachneri)은 한국 동해 중부 이북해역에 서식하는 동해안 특산 어종이다. 이들 동해안 특산 볼락류의 분자진화를 이해하기 위하여 좀볼락과 세줄볼락의 미토콘드리아 유전체 (미토게놈)를 해독하였고, 한반도 주변 해역에 출현하는 16종 볼락의 미토게놈과 비교하였다. 좀볼락 및 세줄볼락의 미토게놈 전체 크기는 각각 16,408 bp 및 16,409 bp이었으며, 37개의 유전자 (13개의 단백질 코딩 유전자, 2개의 리보솜 RNA 유전자 및 22개의 tRNA 유전자)와 1개의 비암호화 영역으로 이루어져 있었다. 동해안 특산 볼락에 속하는 좀볼락, 세줄볼락, 황볼락 및 노랑볼락의 미토게놈을 분석한 결과, 유전체 구조, 뉴클레오티드 구성, 유전자 배열 등에서 매우 유사한 특징을 가지고 있었다. 또한 비암호화 영역인 조절영역에 잘 보존된 "ATGTA" 모티프(motif) 2개가 존재하는 것이 확인되었고, 특정 염기서열의 반복(tandem repeats)은 발견되지 않았다. 이들 동해안 특산 볼락류 4종의 미토게놈 염기서열 간에 차이는 단백질 코딩 유전자 영역보다 조절영역에서 더 큰 것으로 나타났다. 한반도 주변 해역에 출현하는 볼락속 어류의 미토게놈 정보를 이용하여 분자계통학적 유연관계를 분석한 결과, 16종의 볼락을 4개의 클러스터(cluster)로 그룹화할 수 있었고, 이 중에서 동해안 특산 볼락류 4종은 3개의 클러스터에 속해 있었다. 황볼락(S. owstoni)은 흰꼬리볼락(S. longispinis), 우럭볼락(S. hubbsi), 개볼락(S. pachycephalus), 황점볼락(S. oblongus), 황해볼락 (S. koreanus), 조피볼락 (S. schlegelii) 및 탁자볼락(S. taczanowskii)과 동일한 클러스터에 속하고, 세줄볼락 (S. trivittatus)은 누루시볼락 (S. vulpes)과 동일한 유전적 분기군으로 나타났다. 동해안 특산 볼락류 4종 중에서 좀볼락(S. minor)과 노랑볼락(S. steindachneri)은 동일한 클러스터로 분류되어 유연관계가 가장 높은 것으로 나타났다. 본 연구의 결과는 한국 동해 중부해역에 서식하는 볼락류의 진화양상을 이해하거나, Sebastidae 어류의 유전적 진화연구에 유용한 정보로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 한국해양과학기술원 주요사업인 '한국 주변 해양 생태계 변동 이해 및 대응 기반 연구(PE99913)'와 '생지화학 순환 및 해양환경변동 연구(PE99912)'의 지원을 받아 수행한 연구결과입니다. 본 연구결과 도출에 필요한 동해안 특산 볼락류 표본을 제공해 주신 국립수산과학원의 박정호 박사님께 감사드립니다.

References

  1. Anderson, S., A.T. Bankier, B.G. Barrell, M.H.L. de Bruijn, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden and I.G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290: 457-465. https://doi.org/10.1038/290457a0.
  2. Asakawa, S., Y. Kumazawa, T. Araki, H. Himeno, K. Miura and K. Watanabe. 1991. Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J. Mol. Evol., 32: 511-520. https://doi.org/10.1007/BF02102653.
  3. Avise, J.C. 1991. Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annu. Rev. Genet., 25: 45-69. https://doi.org/10.1146/annurev.ge.25.120191.000401.
  4. Boore, J.L. 1999. Animal mitochondrial genomes. Nucleic Acids Res., 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767.
  5. Broughton, R.E., J.E. Milam and B.A. Roe. 2001. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res., 11: 1958-1967. http://doi.org/10.1101/gr.156801.
  6. Brown, W.M. 1985. The mitochondrial genome of animals. In: McIntyre, R.J. (ed.), Molecular evolutionary genetics. Plenum Press, New York, USA, pp. 95-130.
  7. Buroker, N.E., J.R. Brown, T.A. Gilbert, P.J. O'Hara, A.T. Beckenbach, W.K. Thomas and M.J. Smith. 1990. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics, 124: 157-163. https://doi.org/10.1093/genetics/124.1.157.
  8. Catanese, G., M.M. Manchado and C. Infante. 2010. Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: Strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene, 452: 35-43. https://doi.org/10.1016/j.gene.2009.12.004.
  9. Crochet, P.A. and E. Desmarais. 2000. Slow rate of evolution in the mitochondrial control region of gulls (Aves: Laridae). Mol. Biol. Evol., 17: 1797-1806. https://doi.org/10.1093/oxfordjournals.molbev.a026280.
  10. Cui, L., R. Cao, Y. Dong, X. Gao, J. Cen and S. Lu. 2019. The first complete mitochondrial genome of the flathead Cociella crocodilus (Scorpaeniformes: Platycephalidae) and the phylogenetic relationships within Scorpaeniformes based on whole mitogenomes. Genes, 10: 533. https://doi.org/10.3390/genes10070533.
  11. Fenn, J.D., H. Song, S.L. Cameron and M.F. Whiting. 2008. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol. Phylogenet. Evol., 49: 59-68. https://doi.org/10.1016/j.ympev.2008.07.004.
  12. Fernandez-Silva, P., J.A. Enriquez and J. Montoya. 2003. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol., 88: 41-56. https://doi.org/10.1113/eph8802514.
  13. Frazer-Abel, A.A. and P.J. Hagerman. 1999. Determination of the angle between the acceptor and anti codon stems of a truncated mitochondrial tRNA. J. Mol. Biol., 285: 581-593. https://doi.org/10.1006/jmbi.1998.2320.
  14. Hoelzel, A.R., J.M. Hancock and G.A. Dover. 1993. Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species. J. Mol. Evol., 37: 190-197. https://doi.org/10.1007/BF02407355
  15. Hong, G., S. Jiang, M. Yu, Y. Yang, F. Li, F. Xue and Z. Wei. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochim. Biophys. Sin., 41: 446-455. https://doi.org/10.1093/abbs/gmp030.
  16. Hyde, J.R. and R.D. Vetter. 2007. The origin, evolution, and diversification of rockfishes of the genus Sebastes(Cuvier). Mol. Phylogent. Evol., 44: 790-811. https://doi.org/10.1016/j.ympev.2006.12.026.
  17. Iwasaki, W., T. Fukunaga, R. Isagozawa, K. Yamada, Y. Maeda, T.P. Satoh, T. Sado, K. Mabuchi, H. Takeshima, M. Miya and M. Nishida. 2013. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol., 30: 2531-2540. https://doi.org/10.1093/molbev/mst141.
  18. Jang, Y.S., E.K. Lee, J.H. Park, K.Y. Kim and S. Kim. 2016. Complete mitochondrial genome of Sebastes steindachneri (Scorpaenidae: Scorpaeniformes) from the East Sea, Korea. Mitochondrial DNA A DNA Mapp. Seq. Anal., 27: 4041-4043. https://doi.org/10.3109/19401736.2014.1003834.
  19. Jia, C., X. Zhang, S. Xu, T. Yang, T. Yanagimoto and T. Gao. 2020. Comparative analysis of the complete mitochondrial genomes of three rockfishes (Scorpaeniformes, Sebastiscus) and insights into the phylogenetic relationships of Sebastidae. Biosci. Rep., 40: BSR20203379. https://doi.org/10.1042/BSR20203379.
  20. Johansen, S., P.H. Guddal and T. Johansen. 1990. Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res., 18: 411-419. https://doi.org/10.1093/nar/18.3.411.
  21. Kai, Y., K. Nakayama and T. Nakabo. 2003. Molecular phylogenetic perspective on speciation in the genus Sebastes (Scorpaenidae) from the Northwest Pacific and the position of Sebastes within the subfamily Sebastinae. Ichthyol. Res., 50: 239-244. https://doi.org/10.1007/s10228-003-0163-9.
  22. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096.
  23. Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. Mc-Gettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson and D.G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404.
  24. Lavrov, D.V., W.M. Brown and J.L. Boore. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc. Natl. Acad. Sci. USA, 97: 13738-13742. https://doi.org/10.1073/pnas.250402997.
  25. Lee, S.K., Y.U. Kim, J.G. Myoung and J.M. Kim. 2000. Dictionary of Korean fish names. Junginsa Pub. Co., Seoul, Korea, 222pp.
  26. Lee, T.W. 2011. Seasonal variation in species composition of demersal fish in the coastal water off Uljin and Hupo in the East Sea of Korea in 2002. Korean J. Ichthyol., 23: 187-197.
  27. Lei, R., G.D. Shore, R.A. Brenneman, S.E. Engberg, B.D. Sitzmann, C.A. Bailey, L.M. Kimmel, R. Randriamampionona, J.F. Ranaivoarisoa and E.E. Louis Jr. 2010. Complete sequence and gene organization of the mitochondrial genome for Hubbard's sportive lemur (Lepilemur hubbardorum). Gene, 464: 44-49. https://doi.org/10.1016/j.gene.2010.06.001.
  28. Lower, T.M. and S.R. Eddy. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genome sequence. Nucleic Acids Res., 25: 955-964. https://doi.org/10.1093/nar/25.5.955.
  29. Macey, J.R., A. Larson, N.B. Ananjeva, Z. Fang and T.J. Papenfuss. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol., 14: 91-104. https://doi.org/10.1093/oxfordjournals.molbev.a025706.
  30. Matson, C.W. and R.J. Baker. 2001. DNA sequence variation in the mitochondrial control region of red-backed voles (Clethrionomys). Mol. Biol. Evol., 18: 1494-1501. https://doi.org/10.1093/oxfordjournals.molbev.a003935.
  31. Miya, M., A. Kawaguchi and M. Nishida. 2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol., 18: 1993-2009. https://doi.org/10.1093/oxfordjournals.molbev.a003741.
  32. Miya, M., H. Takeshima, H. Endo, N.B. Ishiguro, J.G. Inoue, T. Mukai, T.P. Satoh, M. Yamaguchi, A. Kawaguchi, K. Mabuchi, S.M. Shirai and M. Nishida. 2003. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol., 26: 121-138. https://doi.org/10.1016/S1055-7903(02)00332-9.
  33. Oh, J.N., S. Kim, E.K. Lee, J.H. Park, K.Y. Kim and Y.S. Jang. 2016. Complete mitochondrial genome of Sebastes owstoni (Scorpaenidae, Scorpaeniformes) from the East Sea, Korea. Mitochondrial DNA A DNA Mapp. Seq. Anal., 27: 3952-3954. https://doi.org/10.3109/19401736.2014.989501.
  34. Ohama, T., A. Muto and S. Osawa. 1990. Role of GC-biases mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids. Res., 18: 1565-1569. https://doi.org/10.1093/nar/18.6.1565.
  35. Ojala, D., J. Montoya and G. Attardi. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290: 470-474. https://doi.org/10.1038/290470a0.
  36. Perna, N.T. and T.D. Kocher. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol., 41: 353-358. https://doi.org/10.1007/bf01215182
  37. Rahman, M.M., K.B. Yoon, J.Y. Kim, M.Z. Hussin and Y.C. Park. 2016. Complete mitochondrial genome sequence of the Indian pipistrelle Pipistrellus coromandra (Vespertilioninae). Anim. Cells Syst., 20: 86-94. http://dx.doi.org/10.1080/19768354.2016.1150877.
  38. Ravin, N.V., Y.P. Galachyants, A.V. Mardanov, A.V. Beletsky, D.P. Petrova, Y.R. Zakharova, T.A. Sherbakova, Y.V. Likhoshway, K.G. Skryabin and M.A. Grachev. 2010. Complete sequence of the mitochondrial genome of a diatom alga Synedra acus and comparative analysis of diatom mitochondrial genomes. Curr. Genet, 56: 215-223. https://doi.org/10.1007/s00294-010-0293-3.
  39. Reyes, A., C. Gissi, G. Pesole and C. Saccone. 1998. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol. Biol. Evol., 15: 957-966. https://doi.org/10.1093/oxfordjournals.molbev.a026011.
  40. Ruokonen, M. and L. Kvist. 2002. Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol., 23: 422-432. https://doi.org/10.1016/S1055-7903(02)00021-0.
  41. Saha, A., T. Johansen, R. Hedeholm, E.E. Nielsen, J.I. Westgaard, L. Hauser, B. Planque, S.X. Cadrin and J. Boje. 2017. Geographic extent of introgression in Sebastes mentella and its effect on genetic population structure. Evol. Appl., 10: 77-90. https://doi.org/10.1111/eva.12429.
  42. Satoh, T.P., M. Miya, H. Endo and M. Nishida. 2006. Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: Evidence from the complete mitochondrial genome sequences. Mol. Phylogenet. Evol., 40: 129-138. https://doi.org/10.1016/j.ympev.2006.02.014.
  43. Sbisa, E., F. Tanzariello, A. Reyes, G. Pesole and C. Saccone. 1997. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene, 205: 125-140. https://doi.org/10.1016/S0378-1119 (97)00404-6.
  44. Shen, X., Z. Pu, X. Chen, R.W. Murphy and Y. Shen. 2019. Convergent evolution of mitochondrial genes in deep-sea fishes. Front. Genet., 10: 925. https://doi.org/10.3389/fgene.2019.00925.
  45. Sun, Y., C. Chen, J. Gao, M.N. Abbas, S. Kausar, C. Qian, L. Wang, G. Wei, B.J. Zhu and C.L. Liu. 2017. Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. PLoS ONE, 12: e0178773. https://doi.org/10.1371/journal.pone.0178773.
  46. Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10: 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
  47. Wolstenholme, D.R. 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol., 141: 173-216. https://doi.org/10.1016/S0074-7696 (08)62066-5.
  48. Wyman, S.K., R.K. Jansen and J.L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20: 3252-3255. https://doi.org/10.1093/bioinformatics/bth352.
  49. Xiao, W., Y. Zhang and H. Liu. 2001. Molecular systematics of Xenocyprinae (Teleotei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol. Phylogenet. Evol., 18: 163-173. https://doi.org/10.1006/mpev.2000.0879.
  50. Yang, H., J. Xia, J.E. Zhang, J. Yang, H. Zhao, Q. Wang, J. Sun, H. Xue, Y. Wu, J. Chen, J. Huang and L. Liu. 2018. Characterization of the complete mitochondrial genome sequences of three croakers (Perciformes, Sciaenidae) and novel insights into the phylogenetics. Int. J. Mol. Sci., 19: 1741. https://doi.org/10.3390/ijms19061741.
  51. Yang, Z. and J.P. Bielawski. 2000. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol., 15: 496-503. https://doi.org/10.1016/S0169-5347(00)01994-7.
  52. Zhang, L.P., Y.Y. Cai, D.N. Yu, K.B. Storey and J.Y. Zhang, 2018. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae). PeerJ, 6: e4595. https://doi.org/10.7717/peerj.4595.