DOI QR코드

DOI QR Code

Numerical modelling of the long-term effects of XCC piling in fine-grained soil

  • Liu, Fei (School of Civil Engineering, Chongqing University) ;
  • Yi, Jiangtao (School of Civil Engineering, Chongqing University) ;
  • Dong, Junjie (School of Civil Engineering, Chongqing University) ;
  • Zhou, Hang (School of Civil Engineering, Chongqing University)
  • Received : 2021.02.27
  • Accepted : 2021.06.23
  • Published : 2021.07.10

Abstract

Although the development and utilization of X-section cast-in-place concrete (XCC) pile have been reported for some time, the long-term effects of XCC piling in fine-grained soil, in particular the set-up effects, have received little attention. This paper reports a coupled effective analysis of XCC piling using the dual-stage Eulerian-Lagrangian (DSEL) technique. The pile installation and subsequent soil consolidation was explicitly and consecutively modelled. The generation of excess pore pressure and alteration of stress states during the pile installation were explored. The distribution and magnitude of effective normal stress at pile/soil interface, in particular its evolution with time, were investigated. The influence of set-up effects on the XCC pile shaft resistance was assessed and quantified. It was found out, although the shaft resistances of both XCC and circular pile develops substantially with time, the consolidation in the wake of XCC pile installation can bring in more capacity enhancements and therefore practical benefits. The ultimate shaft resistance of XCC pile is 45% higher than that of the circular pile of the same cross-sectional area. Additionally, practical advice was given on how to optimize of the cross-sectional shape of XCC piles to take full advantage of set-up effects and achieve economical designs.

Keywords

Acknowledgement

The authors wish to acknowledge the research funding provided by the National Natural Science Foundation of China (No. 51778091).

References

  1. Abu-Farsakh, M., Rosti, F. and Souri, A. (2015), "Evaluating pile installation and subsequent thixotropic and consolidation effects on setup by numerical simulation for full-scale pi0le load tests", Can. Geotech. J., 52(11), 1734-1746. https:// doi.org/10.1139/cgj-2014-0470.
  2. API (2014), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute, Washington, U.S.A.
  3. Azari, B., Fatahi, B. and Khabbaz, H. (2015), "Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour", Geomech. Eng., 8(2), 187-220. https://doi.org/10.12989/gae.2015.8.2.187.
  4. Basu, P., Prezzi, M., Salgado, R. and Chakraborty, T. (2014), "Shaft Resistance and Setup Factors for Piles Jacked in Clay", J. Geotech. Geoenviron. Eng., 140(3), 04013026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001018.
  5. Cao, L., Teh, C. and Chang, M. (2001), "Undrained cavity expansion in modified Cam clay", Geotechnique, 51(4): 323-334. https://doi.org/10.1680/geot.51.4.323.39395.
  6. Carter, J.P., Randolph, M.F. and Wroth, C.P. (1979), "Stress and pore pressure changes in clan during and after the expansion of a cylindrical cavity", Int. J. Numer. Anal. Met., 3(4): 305-322. https://doi.org/10.1002/nag.16100304 02.
  7. Ceccato, F. and Simonini, P. (2017), "Numerical study of partially drained penetration and pore pressure dissipation in piezocone test", Acta Geotechnica, 12(1): 1-15. https://doi.org/10.1007/s11440-016-0448-6.
  8. Ceccato, F., Beuth, L., Vermeer, P.A. and Simonini, P. (2016), "Two-phase Material Point Method applied to the study of cone penetration", Comput. Geotech., 80, 440-452. https://doi.org/10.1016/j.compgeo.2016.03.003.
  9. Dassault Systemes (2014), ABAQUS, Version 6.14 EF Documentation.
  10. De Chaunac, H. and Holeyman, A. (2017), "Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay", Geotechnique, 68(4), 332-344. https://doi.org/10.1680/jgeot.16.P.229.
  11. Ding, X., Luan, L., Liu, H., Zheng, C., Zhou, H. and Qin, H. (2020), "Performance of X-section cast-in-place concrete piles for highway constructions over soft clays", Transport. Geotech., 22: 100310. https://doi.org/10.1016/j.trgeo.2019.100310.
  12. Gavin, K., Gallagher, D., Doherty, P. and McCabe, B. (2010), "Field investigation of the effect of installation method on the shaft resistance of piles in clay", Can. Geotech. J., 47(7), 730-741. https://doi.org/10.1139/t09-146.
  13. Gong, W., Li, L., Zhang, S. and Li, J. (2020), "Long-term setup of a displacement pile in clay: An analytical framework", Ocean Eng., 218(11),10814. https://doi.org/10.1016/j.oceaneng.2020.108143.
  14. Haque, M.N. and Abu-Farsakh, M.Y. (2018), "Development of analytical models to estimate the increase in pile capacity with time (pile setup) from soil properties", Acta Geotechnica, 14(3), 881-905. https://doi.org/10.1007/s11440-018-0654-5.
  15. Hyodo, J., Shiozaki, Y., Tamari, Y., Ozutsumi, O. and Ichii KJG. (2019), "Modeling of pile end Resistance considering the area of influence around the pile tip", Geomech. Eng., 17(3), 289-296. https://doi.org/10.12989/gae.2019.17.3.289.
  16. Jaky, I. (1944), "The coefficient of earth pressure at rest", J. Soc. Hung. Archit. Eng. https://doi.org/10.1139/t94-091.
  17. Karlsrud, K. (2014), "Ultimate shaft friction and load-displacement response of axially loaded piles in clay based on instrumented pile tests", J. Geotech. Geoenviron. Eng., 140(12). https://doi.org/10.1061/(ASCE)gt.1943-5606.0001170.
  18. Khanmohammadi, M. and Fakharian, K. (2017), "Numerical modelling of pile installation and set-up effects on pile shaft capacity", Int. J. Geotech. Eng., 13(5), 484-498. https://doi.org/10.1080/19386362.2017.1368185.
  19. Kong, G.Q., Zhou, H., Ding, X.M. and Cao, Z.H. (2015), "Measuring effects of X-section pile installation in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 168(4), 296-305. https://doi.org/10.1680/geng.14.00048.
  20. Li, L., Chen, H.H., Li, J.P. and Sun, D.A. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.
  21. Li, L., Gong, W. and Li, J. (2020), "Effects of clay creep on long-term load-carrying behaviors of bored piles: Aiming at reusing existing bored piles", Int. J. Geomech., 20(8), 04020132. https://doi.org/10.1061/(ASCE)gm.1943-5622.0001769.
  22. Li, J. P., Li, L., Sun, D.A. and Gong, W.B. (2017a), "Time-dependent bearing capacity of jacked piles in K0 consolidated clay based on CPTU tests", Chin. J. Geotech. Eng, 39(2), 193-200. https://doi.org/0.11779/CJGE201702001.
  23. Li, L., Li, J., Sun, D.A. and Gong, W. (2017b), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.
  24. Li, L., Li, J., Sun, D. and Zhang, L. (2017c), "Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method", Ocean Eng., 143, 177-185. https://doi.org/10.1016/j.oceaneng.2017.08.010.
  25. Lim, Y.X., Tan, S. and Phoon, K. (2019), "Interpretation of horizontal permeability from piezocone dissipation tests in soft clays", Comput. Geotech., 107, 189-200. https://doi.org/10.1016/j.compgeo.2018.12.001.
  26. Liu, F., Yi, J. and Cheng, P. (2020), "Numerical simulation of setup around shaft of XCC pile in clay", Geomech. Eng., 21(5), 489-501. https://doi.org/10.12989/gae.2020.21.5.489.
  27. Liu, H., Zhou, H. and Kong, G. (2014), "XCC pile installation effect in soft soil ground: A simplified analytical model", Comput. Geotech., 62, 268-282. https://doi.org/10.1016/j.compgeo.2014.07.007.
  28. Lorenzo, R., Cunha, R.P.D., Neto, M.P.C. and Nairn, J.A. (2016), "umerical simulations of deep penetration problems using the material point method", Geomech. Eng., 11(1), 59-76. https://doi.org/10.12989/gae.2016.11.1.059
  29. Lv, Y., Liu, H., Ding, X. and Kong, G. (2012), "Field tests on bearing characteristics of X-section pile composite foundation", J. Perform. Constr. Fac., 26(2), 180-189. https:// doi.org/10.1061/(ASCE)CF.1943-5509.0000247.
  30. Lv, Y., Liu, H., Ng, C.W.W., Gunawan, A. and Ding, X. (2014a), "A modified analytical solution of soil stress distribution for XCC pile foundations", Acta Geotechnica, 9(3), 529-546. https://doi.org/10.1007/s11440-013-0280-1.
  31. Lv, Y., Liu, H., Ng, C.W.W., Ding, X. and Gunawan, A. (2014b), "Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation", Comput. Geotech., 55, 365-377. https://doi.org/10.1016/j.compgeo.2013.09.019.
  32. Lv, Y., Ng, C.W.W., Lam, S.Y., Liu, H. and Ding, X. (2016), "Comparative study of Y-shaped and circular floating piles in consolidating clay", Can. Geotech. J., 53(9), 1483-1494. https://doi.org/10.1139/cgj-2015-0634.
  33. Lv, Y. and Zhang, D. (2018), "Geometrical effects on the load transfer mechanism of pile groups: three-dimensional numerical analysis", Can. Geotech. J., 55(5), 749-757. https://doi.org/10.1139/cgj-2016-0518.
  34. Mahmoodzadeh, H., Wang, D. and Randolph, M. (2015), "Interpretation of piezoball dissipation testing in clay", Geotechnique, 65(10), 831-842. https://doi.org/10.1680/geot.14.P.213.
  35. Peng, Y., Ding, X., Xiao, Y., Deng, X. and Deng, W. (2020), "Detailed amount of particle breakage in non-uniformly graded sands under one-dimensional compression", Can. Geotech. J., 57(8): 1239-1246. https://doi.org/10.1139/cgj-2019-0283.
  36. Peng, Y., Liu, H., Li, C., Ding, X. and Deng, X. (2021), "The detailed particle breakage around the pile in coral sand", Acta Geotechnica, 16, 1971-1981. https://doi.org/10.1007/s11440-020-01089-2.
  37. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Wiley, Chichester, Sussex, England, U.K.
  38. Rezania, M., Nezhad, M.M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: Case study", Int. J. Geomech., 17(3), 04016075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.
  39. Rosti, F. (2016), "Numerical simulation of pile installation and following setup considering soil consolidation and thixotropy", Ph.D. Dissertation, Louisiana State University, Louisiana, U.S.A.
  40. Silvestri, V. and Abousamra, G. (2012), "Analytical solution forundrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.
  41. Sun, G., Kong, G., Liu, H., and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Can. Geotech. J., 54(9), 1340-1345. https://doi.org/0.1139/cgj-2015-0623. https://doi.org/10.1139/cgj-2015-0623
  42. Tho, K.K., Leung, C.F., Chow, Y.K. and Swaddiwudhipong, S. (2012), "Eulerian finite-element technique for analysis of jackup spudcan penetration", Int. J. Geomech., 12(1), 64-73. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111.
  43. Ullah, S.N., Hou, L.F., Satchithananthan, U., Chen, Z. and Gu, H. (2018), "A 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUS", Comput. Geotech., 99, 203-215. https://doi.org/0.1016/j.compgeo.2018.01.018. https://doi.org/10.1016/j.compgeo.2018.01.018
  44. Wang, Y., Li, L. and Li, J. (2021), "A similarity solution for undrained expansion of a cylindrical cavity in K0-consolidated anisotropic soils", Geomech. Eng., 25(4), 303-305. http://doi.org/10.12989/gae.2021.25.4.303.
  45. Yi, J.T., Goh, S.H., Lee, F.H. and Randolph, M. (2012a), "A numerical study of cone penetration in fine-grained soils allowing for consolidation effects", Geotechnique, 62(8), 707-719. https://doi.org/10.1680/geot.8.P.155.
  46. Yi, J.T., Lee, F.H., Goh, S.H., Zhang, X.Y. and Wu, J. (2012b), "Eulerian finite element analysis of excess pore pressure generated by spudcan installation into soft clay", Comput. Geotech., 42, 157-170. https://doi.org/0.1016/j.compgeo.2012.01.006. https://doi.org/10.1016/j.compgeo.2012.01.006
  47. Yi, J.T., Liu, F., Zhang, T.B, Yao, K. and Guo, Z. (2021), "A large deformation finite element investigation of pile group installations with consideration of intervening consolidation", Appl. Ocean Res., 112, 102698. https://doi.org/10.1016/j.apor.2021.102698.
  48. Yi, J.T., Zhao, B., Li, Y.P., Yang, Y., Lee, F.H., Goh, S.H., Zhang, X.Y. and Wu, J.F. (2014), "Post-installation pore-pressure changes around spudcan and long-term spudcan behaviour in soft clay", Comput. Geotech., 56, 133-147. https://doi.org/10.1016/j.compgeo.2013.11.007
  49. Yi, J.T., Pan, Y.T., Qiu, Z.Z., Liu, F. and Zhang, L. (2020), "The post-installation consolidation settlement of jack-up spudcan foundations in clayey seabed soils", Comput. Geotech., 123, 103611. https://doi.org/10.1016/j.compgeo.2020.103611.
  50. Zhang, D., Lv, Y., Liu, H., and Wang, M. (2015), "An analytical solution for load transfer mechanism of XCC pile foundations", Comput. Geotech., 67, 223-228. https://doi.org/10.1016/j.compgeo.2015.03.006.
  51. Zhou, H., Liu, H., Randolph, M., Kong, G. and Cao, Z. (2017), "Experimental and analytical study of X-section cast-in-place concrete pile installation effect", Int. J. Phys. Model. Geotech., 17(2), 103-121. https://doi.org/10.1680/jphmg.15.00037.
  52. Zhou, H., Yuan, J., Liu, H. and Kong, G. (2018), "Analytical model for evaluating XCC pile shaft capacity in soft soil by incorporating penetration effects", Soils Found., 58(5), 1093-1112. https://doi.org/10.1016/j.sandf.2018.04.005.
  53. Zhou, H., Liu, H., Yuan, J. and Chu, J. (2019), "Numerical simulation of XCC pile penetration in undrained clay", Comput. Geotech., 106, 18-41. https://doi.org/10.1016/j.compgeo.2018.10.009.