DOI QR코드

DOI QR Code

Load-displacement behaviour of tapered piles: Theoretical modelling and analysis

  • Li, Yunong (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University) ;
  • Li, Wei (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University)
  • 투고 : 2020.12.10
  • 심사 : 2021.06.17
  • 발행 : 2021.07.10

초록

This paper presents a simplified analytical approach for evaluating the load-displacement response of single tapered pile and pile groups under static axial compressive loads. The response of the tapered pile shaft is considered elastically in the initial stage, whereas the increase in stresses due to slippage along the pile-soil interface is obtained from a developed undrained cylindrical cavity expansion solution based on the K0-based anisotropic modified Cam-clay (K0-AMCC) model. An effective iterative computer program is developed to calculate the load-displacement behaviour of a single tapered pile. Regarding the response analysis of tapered pile groups, a finite-difference method is employed to calculate the interaction between tapered pile shaft, and the linear elastic model to simulate the interaction developed at the pile base. A reduction coefficient is introduced into the analysis of pile shaft interaction to clarify the reinforcing effect between tapered piles. Therefore, the settlement calculation methods of pile groups are proposed for different pile cap stiffness. The calculation methods of single tapered pile and pile groups are validated using two 3D Finite Element (FE) programs, and the comparison results show that reasonable predictions can be made using the method proposed in this paper. Parametric studies are conducted to investigate the effects of taper angle, soil anisotropy, pile spacing, and pile number on the load-displacement behaviour of single tapered pile and tapered pile groups.

키워드

참고문헌

  1. Comodromos, E.M., Papadopoulou, M.C. and Rentzeperis, I.K. (2009), "Pile foundation analysis and design using experimental data and 3-D numerical analysis", Comput. Geotech., 36(5), 819-836. https://doi.org/10.1016/j.compgeo.2009.01.011.
  2. Elias, V., Welsh, J., Warren, J., Lukas, R., Collin, G. and Berg, R.R. (2006), Ground Improvement Methods, Vol. II, FHW ANHI-06-020, Federal Highway Administration, Washington, D.C., U.S.A.
  3. El Naggar, M.H. and Wei, J.Q. (1999), "Axial capacity of tapered piles established from model tests", Can. Geotech. J., 36(6), 1185-1194. https://doi.org/10.1139/t99-076.
  4. Guo W.D. and Randolph M.F. (1998), "Rationality of load transfer approach for pile analysis", Comput. Geotech., 23, 85-112. https://doi.org/10.1016/S0266-352X(98)00010-X.
  5. Hamderi, M. (2018), "Comprehensive group pile settlement formula based on 3D finite element analyses", Soils Found., 58(1), 1-15. https://doi.org/10.1016/j.sandf.2017.11.012.
  6. Hataf, N. and Shafaghat, A. (2015), "Optimizing the bearing capacity of tapered piles in realistic scale using 3D finite element method", Geotech. Geol. Eng., 33, 1465-1473. https://doi.org/10.1007/s10706-015-9912-6.
  7. He, J., Liu, J., Zhang, K., Wu, Y. and Cao, Z. (2012), "Experimental study of bearing behaviour of composite foundation with rammed soil-cement tapered piles", Chin. J. Rock Mech. Eng., 31(7), 1506-1512 (in Chinese). https://doi.org/10.3969/j.issn.1000-6915.2012.07.026.
  8. Khan, M.K., El Naggar, M.H. and Elkasabgy, M. (2008), "Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil", Can. Geotech. J., 45(3), 377-392. https://doi.org/10.1139/T07-107.
  9. Kodikara, J., Kong, K.H. and Haque, A. (2006), "Numerical evaluation of side resistance of tapered piles in mudstone", Geotechnique, 56, 505-510. https://doi.org/10.1680/geot.56.7.505.
  10. Kodikara, J.K. and Moore, I.D. (1993), "Axial response of tapered piles in cohesive frictional ground", J. Geotech. Eng., 119, 675-693. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(675).
  11. Kurian, N.P. and Srinivas, M.S. (1995), "Studies on the behaviour of axially loaded tapered piles by the finite element method", Int. J. Numer. Anal. Met., 19, 869-888. https://doi.org/10.1002/nag.1610191204.
  12. Lee, C.Y. (1993), "Settlement of pile group-practical approach", J. Geotech. Eng., 119(9), 1449-1461. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1449).
  13. Lee, K.M. and Xiao, Z.R. (2001), "A simplified method for nonlinear analysis of single piles in multilayered soils", Can. Geotech. J., 38(5), 1063-1080. https://doi.org/10.1139/t01-034.
  14. Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model", Geomech. Eng., 19(2), 141-151. http://doi.org/10.12989/gae.2019.19.2.141.
  15. Li, C., Zou, J.F. and Li, L. (2019), "Elasto-plastic solution for cavity expansion problem in anisotropic and drained soil mass", Geomech. Eng., 19(6), 513-522. http://doi.org/10.12989/gae.2019.19.6.513.
  16. Li, L., Chen, H., Li, J. and Sun, D. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.
  17. Li, L., Li, J. and Sun, D. (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.
  18. Li, L., Li, J., Sun, D. and Gong, W. (2017a), "A semi-analytical approach for time-dependent load-settlement response of a jacked pile in clay strata", Can. Geotech. J., 54(12), 1682-1692. https://doi.org/10.1139/cgj-2016-0561.
  19. Li L., Li J., Sun, D. and Gong, W. (2017b), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.
  20. Li, L., Li, J., Wang, Y. and Gong, W. (2020), "Analysis of nonlinear load-displacement behaviour of pile groups in clay considering installation effects", Soils Found., 60(4), 1-15. https://doi.org/10.1016/j.sandf.2020.04.008.
  21. Liu, J., He, J. and Min, C. (2010), "Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles", Rock Soil Mech., 31(7), 2202-2206. https://doi.org/10.16285/j.rsm.2010.07.027 (in Chinese).
  22. Liu, J., He, J., Wu, Y. and Yang, Q. (2012), "Load transfer behaviour of a tapered rigid pile", Geotechnique, 62, 649-652. https://doi.org/10.1680/geot.11.T.001.
  23. Manandhar, S. and Yasufuku, N. (2012), "Analytical model for the end bearing capacity of tapered piles using cavity expansion theory", Adv. Civ. Eng., 339-347. https://doi.org/10.1155/2012/749540.
  24. Manandhar, S. and Yasufuku, N. (2013), "Vertical bearing capacity of tapered piles in sands using cavity expansion theory", Soils Found., 53, 853-867. https://doi.org/10.1016/j.sandf.2013.10.005.
  25. Mayne, P.W., and Kulhawy, F.H. (1982), "K0-OCR relationships in soils", J. Geotech. Eng., 108(6), 851-872. https://doi.org/10.1016/0148-9062(83)91623-6.
  26. Mylonakis, G., and Gazetas, G. (1998), "Settlement and additional internal forces of grouped piles in layered soil", Geotechnique, 48(1), 55-72. https://doi.org/10.1680/geot.1998.48.1.55.
  27. Paik, K., Lee, J. and Kim, D. (2011), "Axial response and bearing capacity of tapered piles in sandy soil", Geotech. Test. J., 34, 1-9. https://doi.org/10.1520/GTJ102761.
  28. Paik, K., Lee, J. and Kim, D. (2013), "Calculation of the axial bearing capacity of tapered bored piles", Proc. ICE Geotech. Eng., 166(5), 502-514. https://doi.org/10.1680/geng.10.00127.
  29. Randolph, M.F. and Wroth, C.P. (1978), "Analysis of deformation of vertically loaded piles", J. Geotech. Geoenviron. Eng., 104, 1465-1488. https://doi.org/10.1061/AJGEB6.0000729.
  30. Randolph, M.F. and Wroth, C.P. (1979), "An analysis of the vertical deformation of pile groups", Geotechnique, 29(4), 423-439. https://doi.org/10.1680/geot.1979.29.4.423.
  31. Sakr, M., and El Naggar, M.H. (2003), "Centrifuge modeling of tapered piles in sand", Geotech. Test. J., 26(1), 22-35. https://doi.org/10.1520/GTJ11106J.
  32. Singh, S. and Patra, N.R. (2020), "Axial behavior of tapered piles using cavity expansion theory", Acta Geotech., 15, 1619-1636. https://doi.org/10.1007/s11440-019-00866-y.
  33. Wang, Z., Xie, X. and Wang, J. (2012), "A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils", Comput. Geotech., 45, 118-126. https://doi.org/10.1016/j.compgeo.2012.05.011.
  34. Wei, J. and El Naggar, M.H. (1998), "Experimental study of axial behaviour of tapered piles", Can. Geotech. J., 35(4), 641-654. https://doi.org/10.1139/cgj-35-4-641.
  35. Yang, C., Chen, H. and Li, J. (2020), "Drained cylindrical cavity expansion analysis in anisotropic soils considering 3D strength" Geotechnique Lett., 10(2), 346-352. https://doi.org/10.1680/jgele.19.00043.
  36. Yang, C., Li, J., Li, L. and Sun, D. (2021), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130, 103922. https://doi.org/10.1016/j.compgeo.2020.103922.
  37. Zhang, Q. and Zhang, Z. (2012), "Simplified calculation approach for settlement of single pile and pile Groups", J. Comput. Civ. Eng., 26(6), 750-758. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000167.
  38. Zil'berberg, S.D. and Sherstnev, A.D. (1990), "Construction of compaction tapered pile foundations", Soil Mech. Found. Eng., 27(3), 96-101. https://doi.org/10.1007/BF02306664.