DOI QR코드

DOI QR Code

Pile-soil interaction determined by laterally loaded fixed head pile group

  • Poorjafar, Aysan (Faculty of Civil Engineering, Department of Geotechnical Engineering, University of Tabriz) ;
  • Esmaeili-Falak, Mahzad (Department of Civil Engineering, Tehran North Branch, Islamic Azad University) ;
  • Katebi, Hooshang (Faculty of Civil Engineering, Department of Geotechnical Engineering, University of Tabriz)
  • Received : 2020.08.13
  • Accepted : 2021.06.23
  • Published : 2021.07.10

Abstract

This paper summarizes the results of small-scale laboratory modelling of pile behavior under lateral loading, considering the parameters such as short or long, single or group, spacing and rigidity or flexibility of piles. The head of piles was fixedly connected to the cap. In addition, the PIV method has been used to examine the effect of the mentioned parameters on the failure mechanism and pile-soil interaction more accurately. The results show that the short piles have a rigid movement, the displacement of the surrounding soil has occurred along the total length of the pile and the piles rotate around a point but the long piles have a flexible movement at the part of the pile length. It seems that the group effect be more obvious for long piles than short piles. Also, the effective depth of total soil displacement vectors around the trail pile is more than the lead one in long pile group, while this depth for trail pile is less than the lead pile in short pile group. Due to the sharper angles of total displacement vectors around the trail pile, the intensity of soil shear strains around the trail pile is greater than the lead pile.

Keywords

References

  1. Achmus, M. and Thieken, K. (2010), "On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading", Acta Geotechnica, 5(3), 199-210. https://doi.org/10.1007/s11440-010-0124-1.
  2. Aksoy, H., Gor, M. and Inal, E. (2016), "A new design chart for estimating friction angle between soil and pile materials", Geomech. Eng., 10(3), 315-324. https://doi.org/10.12989/gae.2016.10.3.315.
  3. Al-abboodi, I., Sabbagh, T.T. and Al-salih, O. (2020), "Response of passively loaded pile groups - an experimental study", Geomech. Eng., 20(4), 333-343. https://doi.org/10.12989/gae.2020.20.4.333.
  4. Bauer, J., Kempfert, H.G. and Reul, O. (2016), "Lateral pressure on piles due to horizontal soil movement", Int. J. Phys. Model. Geotech., 16(4), 173-184. https://doi.org/10.1680/jphmg.15.00005.
  5. Brown, D.A., Morrison, C., and Reese, L.C. (1988), "Lateral load behavior of pile group in sand", J. Geotech. Eng., 114(11), 1261-1276. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1261).
  6. Chandrasekaran, S.S., Boominathan, A., and Dodagoudar, G.R. (2010), "Group interaction effects on laterally loaded piles in clay", J. Geotech. Geoenviron. Eng., 136(4), 573-582. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000245.
  7. Chore, H.S., Ingle, R.K. and Sawant, V.A. (2009), "Building frame-pile foundation-soil interactive analysis", Interact. Multiscale Mech., 2(4), 397-411. https://doi.org/10.12989/imm.2009.2.4.397.
  8. Esmaeili-Falak, M. (2012), "Study of displacement potential of landslides in Yamchi dam's abutments and Slopes Lake", Ph.D. Dissertation, Islamic Azad university of Science and research branch, Tabriz, East Azerbaijan, Iran.
  9. Esmaeili-Falak, M. (2013), "Two-dimensional finite element analysis of influence of plasticity on the seismic soil-micropiles-structure interaction", Tech. J. Eng. Appl. Sc., 3(13), 1301-1305.
  10. Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Ph.D. Dissertation, University of Tabriz, Tabriz.
  11. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soils-A case study of Tabriz subway", Period. Polytech. Civ. Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
  12. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2020), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Reg. Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
  13. Hazzar, L. (2014), "Analyse numerique de la reponse des pieux sous sollicitations laterales [Numerical analysis of the response of piles under lateral loads]", Ph.D. Dissertation, University of Sherbrooke, Sherbrooke, Quebec, Canada.
  14. Hazzar, L., Hussien, M.N. and Karray, M. (2016), "Investigation of the influence of vertical loads on the lateral response of pile foundations in sands and clays 2", J. Rock Mech. Geotech. Eng. http://doi.org/10.1016/j.jrmge.2016.09.002.
  15. Hazzar, L., Hussien, M.N. and Karray, M. (2017), "On the behaviour of pile groups under combined lateral and vertical loading", Ocean Eng., 131, 174-185. https://doi.org/10.1016/j.oceaneng.2017.01.006.
  16. Hussien, M.N., Tobita, T., Iai, S. and Rollins, K.M. (2012), "Vertical loads effect on the lateral pile group resistance in sand", Geomech. Geoeng., 7(4), 263-282. https://doi.org/10.1080/17486025.2011.598571.
  17. Hussien, M.N., Tobita, T., Iai, S., and Karray, M. (2014), "On the influence of vertical loads on the lateral response of pile foundation", Comput. Geotech., 55, 392-403. https://doi.org/10.1016/j.compgeo.2013.09.022.
  18. Keawsawasvong, S. and Ukritchon, B. (2016), "Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay", Geomech. Eng., 11(2), 235-252. http://doi.org/10.12989/gae.2016.11.2.235.
  19. Khodair, Y. and Abdel-Mohti, A. (2014), "Numerical analysis of pile-soil interaction under axial and lateral loads", Int. J. Concrete Struct. Mater., 8(3), 239-249. https://doi.org/10.1007/s40069-014-0075-2.
  20. Kimura, M., Adachi, T., Kamei, H. and Zhang, F. (1995), 3-D Finite Element Analyses of the Ultimate Behaviour of Laterally Loaded Cast-in-Place Concrete Piles, in Numerical Models in Geomechanics, A.A. Balkema, Brookfield, The Netherlands, 589-594.
  21. Kraft Jr, L. M. (1990), "Computing axial pile capacity in sands for offshore conditions", Mar. Georesour. Geotec., 9(1), 61-92. https://doi.org/10.1080/10641199009388230.
  22. Lemnitzer, A., Ahlberg, E.R., Khalili-Tehrani, P., Rha, C., Taciroglu, E., Stewart, J.P. and Wallace, J.W. (2008), "Experimental testing of a full-scale pile group under lateral loading", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  23. Liu, H.L., Kong, G.Q., Ding, X.M. and Chen, Y.M. (2013), "Performances of large-diameter cast-in-place concrete pipe piles and pile groups under lateral loads", J. Perform. Constr. Fac., 27(2), 191-202. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000304.
  24. Maghsoodi, V., Atermoghaddam, F. and Esmaeili-Falak, M. (2013), "Parametric and two dimensional study of seismic behavior of micro pile group in sandy soil", Int. Res. J. Appl. Basic Sci., 6(7), 901-909.
  25. Mayerhof, G.G. (1976), "Bearing capacity and settlemtn of pile foundations", J. Geotech. Geoenviron. Eng., 102(3), 197-228. https://doi.org/10.1061/AJGEB6.0000243.
  26. McVay, M., Casper, R. and Shang, T.I. (1995), "Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing", J. Geotech. Eng., 121(5), 436-441. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(436).
  27. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Wiley, New York, USA.
  28. Prakash, S. and Sharma, H.D. (1989), Pile Foundations in Engineering Practice, Wiley, London, UK.
  29. Rollins, K.M., Olsen, R.J., Egbert, J.J., Jensen, D.H., Olsen, K.G. and Garrett, B.H. (2006), "Pile spacing effects on lateral pile group behavior: load tests", J. Geotech. Geoenviron. Eng., 132(10), 1262-1271. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1262).
  30. Rollins, K.M., Peterson, K.T. and Weaver, T.J. (1998), "Lateral load behavior of full-scale pile group in clay", J. Geotech. Geoenviron. Eng., 124(6), 468-478. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(468).
  31. Sarkhani Benemaran, R., Esmaeili-Falak, M., & Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proc. Inst. Civ. Eng. Geotech. Eng. 1-16. https://doi.org/10.1680/jgeen.20.00152.
  32. Shen, Y., Wu, Z., Xiang, Z. and Yang, M. (2017), "Physical test study on double-row long-short composite anti-sliding piles", Geomech. Eng., 13(4), 621-640. http://doi.org/10.12989/gae.2017.13.4.621.
  33. Terzaghi, K. (1955), "Evalution of conefficients of subgrade reaction", Geotechnique, 5(4), 297-326. https://doi.org/10.1680/geot.1955.5.4.297.
  34. Ukritchon, B., Faustino, J.C. and Keawsawasvong, S. (2016), "Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment", Geomech. Eng., 10(5), 577-598. http://doi.org/10.12989/gae.2016.10.5.577.
  35. White, D.J. and Bolton, M.D. (2004), "Displacement and strain paths during plane-strain model pile installation in sand", Geotechnique, 54(6), 375-397. https://doi.org/10.1680/geot.2004.54.6.375.
  36. White, D.J. and Take, W.A. (2002), "GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing", Technical Report, Cambridge University, Cambridge, U.K.
  37. White, D.J., Take, W.A. and Bolton, M.D. (2003), "Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry", Geotechnique, 53(7), 619-631. https://doi.org/10.1680/geot.2003.53.7.619.
  38. Wood, D.M. (2003). Geotechnical Modelling, Wiley, London, U.K.

Cited by

  1. Predicting CBR value of stabilized pond ash with lime and lime sludge using multivariate adaptive regression splines vol.3, pp.4, 2021, https://doi.org/10.1088/2631-8695/ac3c9f