DOI QR코드

DOI QR Code

로켓 연소기의 동압 진폭엔벨롭을 이용한 안정성 해석

Stability Analysis Using the Amplitude Envelope of Dynamic Pressure in the Rocket Combustor

  • 투고 : 2020.07.22
  • 심사 : 2020.11.07
  • 발행 : 2021.02.28

초록

얼마나 쉽게 연소불안정 해지는지에 대한 척도로서, 작동 안정성 여유를 예측하기 위해 로켓연소기시스템의 열음향 불안정을 검토하였다. 연소기 시스템의 동적거동 특성파악을 위해 연소성능시험 중 측정한 연소기의 동압 데이터를 바탕으로 시간이 지남에 따라 시스템이 안정해지는지를 결정하는 파라미터로서 성장속도 계수를 구하였다. 파라미터 추출은 시계열 압력데이터를 주파수 도메인으로 전환하여 관심모드의 성장속도나 감쇠계수를 도출하는 방법을 우선 검토하였으며, 스토캐스틱 해석의 경우에는 압력진동의 진폭 엔벨롭으로 부터 압력진폭 PDF를 추출했다.

As a measure of susceptibility on the combustion instability, thermo-acoustic instabilities in rocket combustion system was considered for the estimation of the operational stability margin. Growth rate, which governs the asymptotic stability behavior of the system, was determined from the dynamic data measured during combustion tests in order to understand the dynamic characteristics of combustor system. Frequency transform technique was first applied to determine the system parameters such as growth rate and/or damping coefficient for an interested mode from the time series pressure data, and the PDFs of pressure amplitude were extracted from the amplitude envelope of pressure oscillation for the stochastic analysis.

키워드

참고문헌

  1. Crocco, L. and Sirignano, W.A., "Effect of the Transverse Velocity Component on the Nonlinear Behavior of Short Nozzles," AIAA Journal, Vol. 4, No. 8, pp. 1428-1430, August 1966. https://doi.org/10.2514/3.3691
  2. Baer, M.R. and Mitchell, C.E., A Theoretical Evaluation of Rigid Baffles in Suppression of Combustion Instability, NASA CR-134986, March 1976.
  3. Nguyen, T.V., "Computer code for use in high frequency combustion stability analyses," Aerojet TechSystems Company," Thermodynamic analysis report 9980:1807, Feb. 1988.
  4. Soo Yong Lee, "Linear stability analysis of a baffled rocket combustor," Journal of The Korean Society of Propulsion Engineers, Vol.22 No.3, pp. 46-56, 2018. https://doi.org/10.6108/KSPE.2018.22.3.046
  5. Mitchell, C.E., "Analytical Models for Combustion Instability," AIAA, Progress in Astronautics and Aeronautics, Vol. 169, Liquid Rocket Engine Combustion Instability, edited by Yang, V. and Anderson, W.E., pp. 403-430, 1995.
  6. Quinlan, J.M. and Zinn, B.T., "Development and Dynamical Analysis of Laboratory Facility Exhibiting Full-Scale Combustion Instability Characteristics," AIAA Journal, Vol. 55, No. 12, pp. 4314-4329, Dec, 2017. https://doi.org/10.2514/1.J055680
  7. Lieuwen, T., "Online Combustor Stability Margin Assessment Using Dynamic Pressure Data," Transactions of the ASME, Vol. 127, pp. 478-482, July, 2005.
  8. Noiray, N. and Bruno, S., "Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors," International Journal of Non-Linear Mechanics, 50, pp. 152-163, 2017. https://doi.org/10.1016/j.ijnonlinmec.2012.11.008
  9. Noiray, N., "Linear Growth Rate Estimation from Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors," Journal of Engineering for Gas Turbines and Power, Vol. 139, April 2017.