DOI QR코드

DOI QR Code

An Experimental Study of Tri-arc Rotating Detonation Engine Using Gaseous Ethylene/Oxygen

기체 에틸렌/산소 Tri-arc 회전 데토네이션 엔진 실험연구

  • Lee, Eun Sung (Department of Aerospace Engineering, Pusan National University) ;
  • Han, Hyung-Seok (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Jeong-Yeol (Department of Aerospace Engineering, Pusan National University)
  • Received : 2020.04.25
  • Accepted : 2021.01.05
  • Published : 2021.02.28

Abstract

In rotating detonation engine(RDE), only the detonation wave is moving around the outer wall of the combustor. Neither a mechanical part nor flow is rotating in RDE. Thus, the RDE cross section is not necessary to be circular, but arbitrary closed section is possible. A RDE of tri-arc cross section is designed and As an example of an arbitrary cross sectioned RDE, a RDE of tri-arc cross section is designed in this study, and operational and performance characteristics were examined experimentally. The rotation of the detonation wave is confirmed by dynamic pressure sensor and high-speed camera, while the characteristics of the detonation wave were investigated at the concave and convex surfaces. In the present study, the thrust level of 17.0 N to 96.0 N was obtained depending on the mass flow rate.

회전 데토네이션 엔진(Rotating Detonation Engine, RDE)은 기계 장치나 유동이 아닌 데토네이션 파만이 연소실 벽을 따라 회전한다. 따라서 RDE 단면이 원형이어야 할 필요가 없으며 임의 단면의 닫힌 형상이 가능하다. 본 연구에서는 임의의 단면을 가지는 RDE의 한 가지 예로써 tri-arc 단면 형상의 RDE를 설계하였으며, 실험적으로 작동 및 성능 특성을 살펴보았다. 동압 센서와 고속카메라를 통하여 데토네이션 파의 회전을 확인하였으며, 오목 면과 볼록 면에서 질량 유량에 따른 데토네이션파의 특징을 알아보았다. 본 연구에서는 유량 조건에 따라 17.0 N에서 96.0 N의 추력 수준을 얻을 수 있었다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단 중견연구자지원사업 (NRF-2019R1A2C1004505) 및 한국연구재단 우주핵심기술개발사업 (NRF-2018M1A3A3A02065563)의 지원으로 작성되었습니다.

References

  1. Kim, T.Y. and Choi, J.-Y., "Numerical Study of Detonation Wave Propagation in 2-D Channels of Arbitrary Radius of Curvature," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, U.S.A., AIAA 2014-3903, Jul. 2014.
  2. Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y. and Funaki, I., "Stable detonation wave propagation in rectangular-cross-section curved channels, "Combustion and Flame, Vol. 159, Issue 2, pp. 859-869, 2012. https://doi.org/10.1016/j.combustflame.2011.07.022
  3. Chacon, F. and Gamba, M., "Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine," AIAA Scitech 2019 Forum, San Diego, CA, U.S.A., AIAA 2019-0473, Jan. 2019.
  4. Gawahara, K., Nakayama, H., Kasahara J., Matsuoka, K., Tomioka, S., Hiraiwa, T., Matsuo, A. and Funaki, I., "Detonation engine development for reaction control systems of a spacecraft," 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, SanJose, CA, U.S.A., AIAA 2013-3721, Jul. 2013.
  5. Wen, H., Xie, Q. and Wang, B., "Propagation behaviors of rotating detonation in an obround combustor," Combustion and Flame, Vol. 210, pp. 389-398, 2019. https://doi.org/10.1016/j.combustflame.2019.09.008
  6. Peng, H., Liu, W. and Liu, S., "Ethylene Continuous Rotating Detonation in optically accessible racetrack-like combustor," Combustion Science and Technology, Vol. 191, Issue 4, pp. 676-695, 2018. https://doi.org/10.1080/00102202.2018.1498850
  7. Boller, S.A. and Polanka, M.D., "Experimental Flow Visualization in a Radial Rotating Detonation Engine," AIAA Scitech 2019 Forum, San Diego, CA, U.S.A., AIAA 2019-1253, Jan. 2019.
  8. Pan, Z., Chen, K., Qi, J., Zhang, P., Zhu, Y., Pan, J. and Gui, M., "The propagation characteristics of curved detonation wave: Experiments in helical channels," Proceedings of the Combustion Institute, Vol. 37, Issue 3, pp. 3585-3592, 2019.
  9. Kim, J.M., Niyasdeen, M., Han, H.S., Oh, S.J. and Choi, J.Y., "Research Activities on PGC Propulsion based on RDE, Part I: Basic Studies," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 5, pp. 97-107, 2017.
  10. Kim, J.M., Niyasdeen, M., Han, H.S., Oh, S.J. and Choi, J.Y., "Research Activities on PGC Propulsion based on RDE, Part II: Application Studies," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 6, pp. 91-102, 2017.
  11. Han, H.S., Kim, J.M., Oh, S.J. and Choi, J.Y., "An Experimental Study on Characteristics of Small-scale PDE under Low-frequency Operating Conditions," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 81-89, 2018. https://doi.org/10.6108/KSPE.2018.22.3.081
  12. Han, H.S. and Choi, J.Y., "Operational Characteristics of a Rocket-type RDE using C2H4/GO2, "AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, AIAA 2019-4297, Aug. 2019.
  13. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA, Cleveland, OH, U.S.A., NASA RP-1311, 1994.
  14. Fujii, J., Kumazawa, Y., Matsuo, A., Nakagami, S., Matsuoka, K. and Kasahara, J., "Numerical investigation on detonation velocity in rotating detonation engine chamber," Proceedings of the Combustion Institute, Vol 36, Issue 2, pp. 2665-2672, 2017.