DOI QR코드

DOI QR Code

복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting

  • 김정민 (한밭대학교 신소재공학과) ;
  • 정기채 (한밭대학교 신소재공학과) ;
  • 김채영 (한밭대학교 신소재공학과) ;
  • 신제식 (한국생산기술연구원 뿌리산업기술연구소)
  • Kim, Jeong-Min (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Jung, Ki-Chae (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Kim, Chae-Young (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Shin, Je-sik (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology)
  • 투고 : 2020.11.12
  • 심사 : 2021.01.05
  • 발행 : 2021.02.28

초록

알루미늄 합금과 주철의 복합주조 공정 중에는 주철로부터 철 성분이 용해되어 알루미늄 용탕에 혼입될 수 있으므로 다양한 Fe함유 금속간 화합물이 형성되며, 이로 인해 알루미늄 합금의 인장 특성이 크게 저하 될 수 있다. 반면 불순물로 첨가되는 Fe와 는 달리 Cu의 경우 알루미늄 합금의 기계적 물성을 향상시키기 위해 첨가되는 합금원소이다. 본 연구에서는 Fe와 Cu의 첨가로 인한 알루미늄 합금의 미세조직 및 인장특성의 변화를 조사하였다. 첨가된 Fe 함량이 1% 이상일 경우 조대한 Al5FeSi 상과 같은 Fe 함유 화합물들이 다량 형성되어 인장 특성이 현저히 감소하는 것으로 나타났다. Cu가 첨가 된 알루미늄 합금의 경우 Al2Cu 상이 추가로 형성되었으며, 인장 강도가 뚜렷하게 향상되는 결과를 보였다.

In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

키워드

과제정보

이 논문은 산업핵심기술개발사업의 연구비 지원을 받아 수행되었습니다.

참고문헌

  1. B. Dangi, T.W. Brown and K.N. Kulkarni, J. Alloys Compd., 769 (2018) 777. https://doi.org/10.1016/j.jallcom.2018.07.364
  2. W. Jiang, G. Li, Z. Jiang, Y. Wu and Z. Fan, Mater. Sci. Technol., 34(12) (2018) 1519. https://doi.org/10.1080/02670836.2018.1465620
  3. E. Moosavi-Khoonsari, F. Jalilian, F. Paray, D. Emadi and R.A.L. Drew, Mater. Sci. Technol., 27(11) (2011) 1707. https://doi.org/10.1179/1743284711y.0000000010
  4. V.N. Yeremenko, Y.V. Natanzon and V.I. Dybkov, J. Mater. Sci., 16(7) (1981) 1748. https://doi.org/10.1007/BF00540620
  5. M. Yan and Z. Fan, J. Mater. Sci., 36(1) (2001) 285. https://doi.org/10.1023/A:1004843621542
  6. S.G. Denner and R.D. Jones, Met. Technol., 4 (1977) 167. https://doi.org/10.1179/030716977803292574
  7. M. Sacinti, E. Cubuklusu, and Y. Birol, Int. J. Cast Met. Res., 30(2) (2017) 96. https://doi.org/10.1080/13640461.2016.1250035
  8. S. Sakow, T. Tokunaga, M. Ohno and K. Matsuura, J. Mater. Process. Tech., 277 (2020) 116.
  9. Kim BH and Lee SM, J.Korea Foundry Society, 29(5) (2009) 225.
  10. H. Becker, T. Bergh, P.E. Vullum, A. Leineweber and Y. Li, Materialia, 5 (2019) 100198. https://doi.org/10.1016/j.mtla.2018.100198
  11. A. Gorny, J. Manickaraj, Z. Cai and S. Shankar, J. Alloys Compd., 577 (2013) 103. https://doi.org/10.1016/j.jallcom.2013.04.139
  12. J.A. Taylor, Procedia Mater. Sci., 1 (2012) 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
  13. C.B. Basak, A. Meduri and N.H. Babu, Mater. Design, 182 (2019) 108017. https://doi.org/10.1016/j.matdes.2019.108017
  14. X. Wu, H. Zhang, Z. Ma, T. Tao, J. Gui, W. Song, B. Yang and H. Zhang, J. Alloys Compd., 786 (2019) 205. https://doi.org/10.1016/j.jallcom.2019.01.352
  15. R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu and B. Liu, Mater. Sci. A, A685 (2017) 391.
  16. Kim JM, Shin K and Shin JS, Metals, 10(6) (2020) 759. https://doi.org/10.3390/met10060759
  17. R. Taghiabadi, A. Fayegh, A. Pakbin, M. Nazari and M.H. Ghoncheh, Trans. Nonferrous Met. Soc. China, 28(7) (2018) 1275. https://doi.org/10.1016/s1003-6326(18)64783-1
  18. H. Ding, W. Hu, Y. Duan, X. Wang and C. Dong, J. Mater. Process. Tech., 212(2) (2012) 458. https://doi.org/10.1016/j.jmatprotec.2011.10.009
  19. J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markotter, A. Manzoni, F. Vogel, T. Arlt, I. Manke and J. Banhart, J. Alloys Compd., 766 (2018) 818. https://doi.org/10.1016/j.jallcom.2018.06.372
  20. J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markotter, A. Manzoni, F. Vogel, T. Arlt, I. Manke and J. Banhart, Acta Mater., 129 (2017) 194. https://doi.org/10.1016/j.actamat.2017.02.048
  21. PANDAT, CompuTherm, LLC, Madison, WI, USA. Available online: http://www.computherm.com
  22. Kim DH, Kim JH and E. Kobayashi, Mater. Sci. Eng. A, 768 (2019) 138449. https://doi.org/10.1016/j.msea.2019.138449
  23. Shin JS, Kim TH, Lim KM, Cho H, Yang DH, Jeong CY and Yi S, J. Alloys Compd., 778 (2019) 170. https://doi.org/10.1016/j.jallcom.2018.11.134