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Abstract
Protein hydrolysates and krill meal (KM) are used as protein sources in aquafeeds. The study was conducted to examine the sup-
plemental effects of shrimp protein hydrolysates (SH) or KM in a high‐plant‐protein diet for red seabream (Pagrus major). A fish 
meal (FM)-based diet (40%) was considered as the high-FM diet (HFM) and a diet containing 25% FM and soy protein concen-
trate, in the expense of FM protein from HFM diet, was considered as the low fish meal (LFM) diet. Two other experimental diets (SH 
and KM) were prepared by including SH and KM into LFM diet at 5% inclusion levels in exchange of 5% FM from the LFM diet. 
A feeding trial was conducted for fifteen weeks using triplicate group of fish (Initial mean body weight, 8.47 ± 0.05 g) for a diet. 
Growth performance and feed efficiency of fish were significantly enhanced by HFM, KM and SH supplemented diets over those 
of fish fed LFM diet. Interestingly, these parameters of fish fed SH diet showed better performance than KM and HFM groups. 
Liver IGF-I expression of fish fed SH diet was comparable to HFM group and higher than KM and LFM diets. Protein digestibility 
of SH diet was significantly higher than KM, HFM, and LFM diets. Dry matter digestibility of SH diet was comparable to HFM diet 
and significantly higher than KM and LFM diets. Nitro blue tetrazolium and superoxide dismutase activities of HFM, SH and KM 
groups were significantly elevated than the LFM group and SH diet increased catalase and glutathione peroxidase activities of 
fish compared to KM and LFM groups. Hemoglobin level and hematocrit of fish fed SH and KM diets were significantly higher 
than LFM group. A diet containing 20% FM with KM is comparable to a HFM diet which contains 40% FM for red seabream. SH 
can be used to replace FM from red seabream diet down to 20% and fish performance can be improved better than a diet con-
taining 40% FM. Overall, it seems that SH is more effective ingredient in red seabream diet compared to KM.
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Introduction 

Fish meal (FM) replacement with alternative protein sources 
is considered a major research area in aqua feed industry over 
the last few decades due to limited FM supply and higher de-
mand. Fisheries by-products and other marine protein sources 
have been used in FM replacement studies as supplements to 
compensate impaired growth performance caused by FM re-
duced diets (Khosravi et al., 2015a; Leal et al., 2010; Leduc et al., 
2018; Plascencia-Jatomea et al., 2002). As the result, advanced 
processing technologies have been developed to improve the 
quality of the by-products (Chalamaiah et al., 2012; Dong et al., 
2008). 

Shrimp hydrolysates (SH) are produced from shrimp 
by-product or processing wastes such as shrimp heads, cuticles 
or tail muscles. In particular, shrimp cephalothorax and exo-
skeleton contain asthaxanthin and protein those are account 
for 35%–45% of whole-body weight as inedible wastes (Meyers, 
1986; Shahidi and Synowiecki, 1991). Therefore, several meth-
ods were exploited to make the by-products edible or valuable. 
Hydrolysis method was recommended as a successful way to 
convert by-products into micro nutrients (Bueno-Solano et al., 
2009; Cahú et al., 2012; López-Cervantes et al., 2006; Nwanna, 
2003). The studies on SH have revealed antioxidant, antihyper-
tensive, antimicrobial and myotropic activities (Huang et al., 
2011; Kleekayai et al., 2015; Leduc et al., 2018; Nii et al., 2008). 
Trace amounts of heavy metals, such as Hg, Pb and Cd were re-
corded in shrimp by-products while free amino acid (AA) con-
tent was 15% higher than the edible parts of shrimp (Heu et al., 
2003). In this regard, SH has been evaluated in diets for fish and 
shrimp species, and positive effects were elucidated on growth, 
immunity, digestibility, palatability and health (Khosravi et al., 
2015a, 2015b; Khosravi et al., 2018; Leal et al., 2010; Leduc et al., 
2018; Plascencia-Jatomea et al., 2002). 

Krill are small crustaceans classified into order Euphausia-
cea. They are one of the primary food sources for large marine 
mammals and fishes (Hardy, 2008) and a rich source of marine 
proteins, omega 3 fatty acids, phospholipids and astaxanthine. 
Therefore, krill processing by-products are used to produce 
valuable products, such as krill meal (KM), krill hydrolysates 
and krill oil (Tilseth & Høstmark 2014 ; Xie et al., 2019). KM is 
a palatability enhancer in addition to suitable lipid and mineral 
source for fish (Goto et al., 2001; Hansen et al., 2010). There-
fore, increased feed intake (FI) has been reported in fish spe-
cies when diets are incorporated with KM (Hatlen et al., 2017; 

Yoshitomi et al., 2006). Dietary KM supplementation have been 
proven to improve growth, feed utilization, health status, diet 
digestibility and disease resistance of fish (Hansen et al., 2010; 
Yan et al., 2018). Recently, FM replacement ability of KM was 
reported by several studies in diets for different fish species in-
cluding gilthead seabream (Sparus aurata) (Saleh et al., 2018), 
large yellow croaker (Larimichthys crocea) (Wei et al., 2019), and 
olive flounder (Paralichthys olivaceus) (Tharaka et al., 2020). 
KM was also included as a feed ingredient in FM reduced diets 
for red seabream (Pagrus major) (Takagi et al., 2001; Kader et 
al., 2012). Shimizu at al. (1990) reported that feeding behavior 
of red seabreams was stimulated by dietary KM supplementa-
tion. Later, Kader et al. (2010) replaced 60% of FM protein with 
soy protein concentrate (SPC) and KM in red seabream diet 
without compromising feeding behavior, growth or health. Re-
cently, Cho et al. (2018) tested KM as a main protein source in 
red seabream diet and observed that AA and fatty acid profiles 
of the fish were improved by KM. 

Red seabream is cultured within East Asian region. It was 
the second largest cultured fish species in Japan (Koshio, 2002) 
and the third one in Korea  (Kim et al., 2012; KOSTAT, 2017). 
In our previous studies, FM replacement was successful with 
SH and krill hydrolysates from a high-FM (HFM) diet for red 
seabream (Bui et al., 2014) and HFM effects were restored in di-
ets containing high proportion of plant protein (Khosravi et al., 
2015a). Therefore, this study was conducted to examine the ef-
fects of SH or KM in a high-plant-protein diet for red seabream 
compared to a low-FM (LFM) and HFM diets and, meanwhile, 
compare the supplemental effects of SH and KM in LFM diets 
for red seabream.

Materials and Methods

Experimental diets
Four diets were formulated to contain 45% crude protein and 
18 kJ/g  energy (Table 1) by inclusion of SH and KM those were 
provided by DIANA AQUA (Aquaculture Division of DIANA, 
Member of SYMRISE Group, Elven, France). The molecular 
weight distribution, proximate and essential AAs composition 
of SH and KM were presented in Table 2. A diet prepared to 
contain 40% FM was considered as a HFM diet. Another diet 
was prepared to contain 25% FM and 21% SPC, was regarded 
as the LFM diet. Two other experimental diets (SH and KM) 
were prepared by including SH or KM into the LFM diet at 5% 
inclusion levels in exchange of 5% FM. Both SH and KM diets 
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contained 50% of FM compared to the HFM diet. All dry in-
gredients were thoroughly mixed and, after addition of oil and 
distilled water, the dough was extruded through a pelletizer ma-
chine (SP-50, Gum Gang Engineering, Daegu, Korea) in ideal 
size dried at 25℃ for 24 h and stored at −20℃.

Fish and feeding trial
The feeding trial was conducted in the Marine Science Institute, 
Jeju National University, Jeju, Korea. All fish were acclimatized 
for two weeks by feeding a commercial diet. Fish (8.47 ± 0.05 g) 

were randomly selected and distributed among twelve polyvinyl 
circular tanks (30 fish / tank) of a flow-through system in which 
water flow tare was maintained at 3 L/min and air stones were 
installed to provide oxygen. Tanks were randomly assigned to 
three replicates of four dietary treatments. Photoperiod was 
scheduled for 12:12 h light/dark by fluorescent light. Water tem-
perature was ranged from 22.6℃ to 25.3℃ during the feeding 
trial. Ammonia level and pH were around 0.04 ppm and 7.3 
respectively. Fish in each tank were fed one of the experimental 
diets twice a day (09:00 and 18:00 h) until satiation for fifteen 

Table 1. Formulation and proximate composition of the four 
experimental diets for red seabream (%, dry matter basis)
Ingredient Experimental diets

HFM LFM KM SH

Fish meal1) 40.0 25.0 20.0 20.2

Krill meal2) 0.0 0.0 5.0 0.0

Shrimp hydrolysate2) 0.0 0.0 0.0 5.0

Soy protein concentrate3) 9.0 21.0 21.0 21.0

Corn gluten meal 8.0 8.0 8.0 8.0

Wheat flour 30.5 29.8 29.8 29.6

Squid liver oil 4.0 5.5 5.2 5.5

Soybean oil 4.0 4.0 4.0 4.0

Mineral mix4) 1.0 1.0 1.0 1.0

Vitamin mix5) 1.0 1.0 1.0 1.0

Starch 2.0 1.5 1.8 1.5

Choline chloride 0.5 0.5 0.5 0.5

Lysine 0.0 0.5 0.5 0.5

Methionine 0.0 0.2 0.2 0.2

Taurine 0.0 0.5 0.5 0.5

Di-calcium phosphate 0.0 1.5 1.5 1.5

Proximate composition (Analyzed, %) 

Dry matter 91.1 91.2 91.0 90.6

Crude protein 46.9 47.1 48.2 47.9

Crude lipid 14.6 14.4 14.6 14.4

Ash 9.0 8.1 7.7 8.0
1) Morocco fish meal, 66.5% crude protein and 10.6% crude lipid.
2) DIANA AQUA , Aquaculture Division of DIANA, Member of SYMRISE Group, Elven, France.
3) SPC, Crop, Korea flavour, Korea. 73.6% crude protein and 3.2% crude lipid.
4)   Mineral premix (g/kg of mixture): MgSO4 · 7H2O, 80.0; NaH2PO4 · 2H2O, 370.0; KCl, 130.0; 

Ferric citrate, 40.0; ZnSO4 · 7H2O, 20.0; Ca-lactate, 356.5; CuCl, 0.2; AlCl3 · 6H2O, 0.15; 
Na2Se2O3, 0.01; MnSO4 · H2O, 2.0; CoCl2 · 6H2O, 1.0.

5)   Vitamin premix (g/kg of mixture): L-ascorbic acid, 121.2; DL-α tocopheryl acetate, 18.8; 
thiamin hydrochloride, 2.7; riboflavin, 9.1; pyridoxine hydrochloride, 1.8; niacin, 36.4; 
Ca-D-pantothenate, 12.7; myo-inositol, 181.8; D-biotin, 0.27; folic acid, 0.68; p-amino-
bezoic acid, 18.2; menadione, 1.8; retinyl acetate, 0.73; cholecalficerol, 0.003; cyanocobal-
amin, 0.003.

HFM, high fish meal; LFM, low fish meal; KM, krill meal; SH, shrimp hydrolysate; SPC, soy 
protein concentrate.

Table 2. The molecular weight distribution, proximate and 
essential amino acids composition of shrimp hydrolysate 
(SH) and krill meal (KM) (from product technical data sheets)

SH1) KM2)

Molecular weight (Da, % wet basis)

> 30,000 < 0.1 -

20,000–30,000 < 0.1 -

10,000–20,000 < 0.1 -

5,000–10,000 < 0.5 -

1,000–5,000 8 -

500–1,000 9 -

< 500 83 -

Proximate composition 

Dry matter, DM (%) 96.7 92.6

Protein (% DM) 67.2 65

Lipid (% DM) 12.2 24

Ash (% DM) 10.3 11.8

Soluble protein (% total protein) 94 13

Total PUFA (% fatty acids) 40 23

Total omega 3 (% fatty acids) 15 20

EPA (% fatty acids) 6 10

DHA (% fatty acids) 6 5

Essential amino acids (products, % wet basis)

Arg 4.1 3.8

His 1.5 1.5

Ile 2.7 3.5

Leu 4.3 5.3

Lys 4.1 4.9

Met 1.3 2.1

Phe 2.9 3.1

Thr 2.4 3.0

Val 3.3 3.5
1, 2)   SH and KM were provided by DIANA AQUA, Aquaculture Division of DIANA, Member of 

SYMRISE Group, Elven, France.
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weeks. Fish growth was measured in three weeks interval. Fish 
were fasted for 24 h prior to weighting to minimize stress. FI 
was calculated by collecting uneaten feed 30 min after feeding. 

Sample collection and analyses
All the fish from each tank were counted to determine survival 
rate and bulk weighed to determine growth performance and 
feed utilization after fifteen weeks of feeding trial. Then, six fish 
were randomly selected from each tank and anesthetized with 
2-phenoxy ethanol solution (200 ppm) by dipping for few min-
utes. Three fish were selected to withdraw blood samples with 
syringes containing heparin to separate plasma samples. An-
other three fish were selected to withdraw blood samples with 
non-hepasrinized syringes and the serum was separated after 
clotting at room temperature. Both plasma and serum were sep-
arated after centrifugation at 5,000 × g for 10 min and stored at 
−80 ºC for further analyses. Three fish were sampled from each 
tank to analyze whole-body proximate composition.

Standard analytical procedures (AOAC, 2005) were fol-
lowed to analyze moisture and ash contents. Crude protein was 
determined by using a Kjeltec Analyzer Unit 2300 (FOSS ana-
lytical, Hilleroed, Denmark). Protocol of Folch et al. (1957) was 
followed to determine crude lipid levels. Hematocrit was mea-
sured by microhematocrit technique (Brown, 1980). Plasma 
biochemical parameters were determined using a blood analyz-
er (SLIM, SEAC, Florence, Italy). Nitroblue tetrazolium (NBT) 
assay was performed to determine respiratory burst activity as 
described by Anderson and Siwicki (1995). Myeloperoxidase 
(MPO) activity of serum was measured according to Quade and 
Roth (1997). Serum superoxide dismutase (SOD) activity was 
measured using a Kit (19160, Sigma-Aldrich, St. Louis, MO, 
USA). Catalase and glutathione peroxidase (GPx) activities of 
serum samples were measured using commercial kits (K773-100 
and K762-100, Biovision, Milpitas, CA, USA).

Estimation of apparent digestibility coefficients
Apparent digestibility coefficients (ADCs) of protein and dry 
matter (DM) of the diets were determined using a Guelph 
system. For ADCs, the experimental diets were added with 
1% chromic oxide (Cr2O3) (203068, Sigma-Aldrich) which is 
an inert indicator. Four groups of red seabream (average body 
weight: 60 g) were distributed into tanks (300 L capacity) at a 
density of 100 fish per tank and fed with the diets containing 
chromic oxide. The Guelph system was settled to receive car-
tridge-filtered seawater at 2 L/min flow rate. Fecal samples were 

collected for 2 weeks. Chromic oxide levels were determined 
according to Divakaran et al. (2002). ADCs for protein and DM 
of the diets were calculated according to Tharaka et al. (2020). 

Expression levels of liver IGF-I mRNA
Three fish were selected from each tank and livers were separat-
ed. Then, samples were immediately frozen in liquid nitrogen. 
RNA was isolated using TRIzol Reagent (Sigma-Aldrich) and 
concentrations were checked at 260 nm using a spectrophotom-
eter after diluting in 0.1 mL of RNase free water. After, total RNA 
(2.5 μg) were reverse transcribed to cDNA with a kit (6110A, 
TaKaRa, Shiga, Japan) and volume up to 0.8 mL with RNase 
free water. The expression level of IGF-I gene was analyzed with 
a Real Time System (TP800 Thermal Cycler Dice™, TaKaRa, 
Shiga, Japan) by using a fluorescent agent (TB Green). The 18S 
rRNA gene was used as the housekeeping gene and primers 
for 18S rRNA gene were designed following a cloned sequence 
(NCBI Genbank accession no: AB259837). Previously designed 
primers were used for IGF-I gene (Hossain et al., 2016). The 
relative expression ratio of the gene was calculated following the 
described model by Pfaffl (2001): Ratio = [(EIGF-I) ΔGF (con-
trol-sample)] / [(Eactin) Ct (control-sample)].

Statistical analysis
Experimental diets were assigned using a completely random-
ized design. The differences among groups were identified by 
one-way analysis of variance (ANOVA) in SPSS version 19.0 
(SPSS, Chicago, IL, USA). Then, Tukey’s HSD test was used to 
find differences in mean values (p < 0.05). The percentage data 
were arcsine transformed before the comparisons. All the data 
are presented as mean of three replicates ± SD.

Results 

All diets were well accepted and consumed by the fish during 
the feeding trial. Final body weight, weight gain, specific growth 
rate, feed conversion ratio (FCR) and protein efficiency ratio 
(PER) were significantly improved in fish fed diets containing 
HFM, KM, or SH compared to those of fish fed LFM diet. Inter-
estingly, the parameters were significantly higher in fish fed SH 
diet than those of fish fed KM and HFM diets. FI and survival 
of fish were not significantly affected by the dietary treatments. 
Liver IGF-I mRNA expression of fish fed SH diet was in line 
with HFM group and significantly higher compared to that of 
fish fed KM and LFM diets. KM group showed significantly 
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higher expression level compared to LFM group. The lowest ex-
pression level was observed in fish fed LFM diet (Table 3).

DM and protein digestibility of diets were significantly en-
hanced by inclusion of SH and KM (Fig. 1). Protein digestibility 
of SH diet was significantly higher than KM, HFM, and LFM di-
ets. Protein digestibility of KM and HFM diets were significantly 
higher than LFM diet. DM digestibility of SH diet was signifi-
cantly higher than KM and LFM diets although values observed 
in SH and KM diets were comparable to HFM diet. The lowest 
protein and DM digestibility were found in LFM diet.

The results of innate immune and antioxidant enzyme analy-
ses are shown in Table 4. Innate immune responses of fish fed SH 
diet were significantly enhanced compared to those of fish fed the 
LFM diet. Even though SH group showed the most improved in-
nate immunity, NBT and SOD activities of HFM and KM groups 
were significantly elevated than the LFM group. However, cat-
alase and GPx activities of KM group were comparable to LFM 
group. MPO activity was not significantly affected by diets. 

The results of blood parameters are shown in Table 4. 
Hemoglobin level and hematocrit of fish fed SH and KM diets 
were significantly higher than that of fish fed LFM diet. How-
ever, cholesterol, glucose and total protein levels of fish were 
not significantly affected by the diets. No significant differences 
were observed in whole-body composition of fish (Table 5).

Fig. 1. Apparent digestibility coefficients (%, ADC) for protein (ADCp) and dry matter (ADCd) of the experimental diets for 
red seabream. HFM, high fish meal; LFM, low fish meal; KM, krill meal; SH, shrimp hydrolysate.

Table 3. Growth performance, feed utilization and liver IGF-I 
mRNA expression of red seabream fed the four experimental 
diets for 15 weeks.

Experimental diets

HFM LFM KM SH

FBW (g) 65 ± 2.55b 52.9 ± 1.68c 63.2 ± 3.51b 76.3 ± 4.79a

WG1) (%) 666 ± 29.4ab 520 ± 15.6c 649 ± 47.9ab 810 ± 60.7a

FI2) 91.3 ± 3.94 93.1 ± 0.91 97.6 ± 5.48 95.1 ± 6.46

FCR3) 1.60 ± 0.08bc 2.01 ± 0.05a 1.74 ± 0.14b 1.51 ± 0.05c

PER4) 1.33 ± 0.07ab 1.06 ± 0.03c 1.19 ± 0.09b 1.39 ± 0.05a

SGR5) (%) 1.94 ± 0.04b 1.74 ± 0.02c 1.92 ± 0.06b 2.10 ± 0.06a

IGF-I6) 1.00 ± 0.00a 0.30 ± 0.05c 0.82 ± 0.07b 1.12 ± 0.07a

Survival (%) 90.0 ± 5.77 84.4 ± 1.92 84.4 ± 5.09 90.0 ± 3.33

Values are mean of triplicate groups and presented as mean ± SD. 
Values with different superscripts in the same row are significantly different (p < 0.05). 
The lack of superscript letter indicates no significant differences among treatments. 
1) Weight gain = [(final body weight – initial body weight)/ initial body weight] × 100.
2) Feed intake (g/fish) = dry feed consumed (g) / fish.
3) Feed conversion ratio = dry feed fed/wet weight gain.
4) Protein efficiency ratio = fish weight gain (g) / protein.
5) Specific growth rate = ln (final weight in grams) – ln (initial weight in grams) × 100.
6) Liver insulin-like growth factors I (relative expression of mRNA).
HFM, high fish meal; LFM, low fish meal; KM, krill meal; SH, shrimp hydrolysate; FBW, final 
body weight.
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Discussion

A LFM diet containing SH improved fish growth and exerted 
even better performance than the HFM group. Also, growth 
performance of fish fed KM diet was comparable to HFM 
group. In our previous studies, growth performance of red 
seabream was improved by supplementation of 5% SH com-
pared to a HFM diet (Bui et al., 2014). HFM effects were shown 
by red seabream fed a SPC based LFM diet containing SH 
(Khosravi et al., 2015a). FI of fish was not significantly influ-
enced by the experimental diets in the present study. Therefore, 
increased fish growth by SH or KM supplementation might be 
due to the nutritional quality of diets which was represented 

by improved FCR and PER compared to the LFM group. KM 
and SH have balanced essential AAs and fatty acids for fishes. 
Soluble protein level is high in SH which contains high level of 
low molecular weight peptides (Table 2). Many active peptides, 
known as growth promoter in fish, are found in these molec-
ular ranges (Chalamaiah et al., 2012). Also, crude lipid level 
and omega-3 fatty acids and EPA , are high in KM. SH and KM 
contain astaxanthin which is a growth stimulator of fish (Cheng 
et al., 2018; Kalinowski et al., 2011; Li et al., 2014; Li et al., 2018; 
Lim et al., 2018; Xie et al., 2017). Therefore, these compounds 
might be involved in restoring HFM effects by SH or KM sup-
plementation into the LFM diet. Teshima et al. (2004) reported 
that dietary supplementation of low molecular weight peptides 
enhances the growth performance of red seabream. Kondo et 
al. (2017) demonstrated that feed conversion and expression of 
digestive enzymes of red seabream can be improved by dietary 
protein hydrolysate supplementation. Supportively, low molec-
ular compounds and peptides which are generated during the 
process of hydrolysis might be associated with the enhanced 
growth performance of fish fed diets containing SH compared 
to the KM group. 

IGF-I is identified as a mitogenic polypeptide that can me-
diate somatic growth-stimulatory effects of growth hormone. 
It is secreted by the liver and transported to other tissues in 
vertebrates (Laron, 2001; Merimee & Laron, 1996). In the same 
way, IGF-I in teleost is regulated by growth hormone and secre-
tion of hepatic IGF-I in a dose-dependent manner (Shamblott 
et al., 1995). IGF-I plays an important role to develop nervous 
system and muscle during the larval stage of Chilean flounder 
(Paralichthys adspersus) (Escobar, 2011). Furthermore, McCor-
mick (1996) demonstrated that this gene might be involved in 
osmoregulation of Atlantic salmon (Salmo salar). In the present 
study, relative expression levels of liver IGF-I mRNA of LFM 
fish group did not reach to those of HFM fish group. However, 
KM supplementation resulted in upregulated expression level 
of the LFM group and dietary SH supplementation restored the 
HFM effects. Bjørndal et al. (2012) observed that dietary krill 
powder can upregulate the expression of animal genes. Zheng et 
al. (2012) found that liver IGF-I expression of Japanese flounder 
(Paralichthys olivaceus) was significantly increased by replacing 
16% FM with protein hydrolysates. The present results along 
with the previous ones indicate that the SH, as a hydrolysate, 
could recover a decreased IGF-I expression of fish fed a diet 
containing high-plant protein sources even though the exact 
mechanism was not clearly verified. According to Metón et al. 

Table 5. Whole-body composition of red seabream fed the 
four experimental diets for 15 weeks (%, DM)

HFM LFM KM SH

Dry matter 30.0 ± 0.41 32.7 ± 1.20 32.9 ± 0.60 33.1 ± 1.59

Protein 53.6 ± 0.4 51.8 ± 0.3 53.6 ± 1.4 54.0 ± 0.2

Lipid 34.1 ± 2.5 32.8 ± 2.5 33.4 ± 2.1 33.8 ± 0.8

Ash 13.9 ± 1.0 11.4 ± 0.6 13.7 ± 1.4 13.8 ± 0.8

Values are mean of triplicate groups and presented as mean ± SD. 
HFM, high fish meal; LFM, low fish meal; KM, krill meal; SH, shrimp hydrolysate.

Table 4. Blood immunological, hematological and biochemical 
parameters of red seabream fed the four experimental diets 
for 15 weeks

HFM LFM KM SH

NBT1) 0.95 ± 0.07ab 0.71 ± 0.04c 0.84 ± 0.07b 1.02 ± 0.06a

MPO2) 1.66 ± 0.13 1.36 ± 0.11 1.76 ± 0.44 1.81 ± 0.09

SOD3) 74.8 ± 0.3ab 63.3 ± 2.7c 74.6 ± 2.2b 81.6 ± 4.1a

GPx4) 109 ± 17a 75.9 ± 7.9b 95.5 ± 20ab 116 ± 8.8a

Catalase5) 1.35 ± 0.09ab 1.05 ± 0.09c 1.19 ± 0.07bc 1.41 ± 0.14a

Hematocrit (%) 37.6 ± 4.0ab 32.7 ± 0.9b 37.6 ± 2.8a 35.8 ± 1.3a

Hemoglobin (g/dL) 5.89 ± 0.2ab 4.86 ± 1.06b 6.96 ± 0.77a 6.58 ± 0.27a

Total protein (g/dL) 1.87 ± 0.15 1.43 ± 0.04 1.68 ± 0.47 1.94 ± 0.09

Glucose (mg/dL) 57.6 ± 1.0 55.5 ± 1.6 55.8 ± 3.8 57.6 ± 3.0

Total cholesterol 
(mg/dL)

220 ± 12 210 ± 6.0 217 ± 13 231 ± 13

Values are mean of triplicate groups and presented as mean ± SD. 
Values with different superscripts in the same row are significantly different (p < 0.05). 
The lack of superscript letter indicates no significant differences among treatments. 
1) Nitro blue tetrazolium activity (OD).
2) Myeloperoxidase activity (OD). 
3) Superoxide dismutase (% inhibition).
4) Glutathione peroxidase activity (mU/mL).
5) Catalase activity (mU/mL).
HFM, high fish meal; LFM, low fish meal; KM, krill meal; SH, shrimp hydrolysate.
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(2000), IGF-I expression of gilthead seabream can be changed 
after feeding. They observed normalized expression about 16 
h after the last feeding. Therefore, IGF-I expression might not 
be changed with sample collection time in the present study 
because fish were fasted for 24 h before sampling. Plasma IGF-I 
level was also found to have a correlation with the protein con-
tents of isocaloric diets (Moriyama et al., 2000). SH and KM 
used for this study contain almost similar level of AAs and pro-
teins. Whereas, soluble protein level in SH was higher compared 
to KM (Table 2). Therefore, high levels of soluble protein in SH 
might explain the reason for the increased IGF-I expression.

In our previous studies, SH supplementation improved 
protein and DM digestibility of red seabream compared to a 
HFM diet (Bui et al., 2014). Digestibility of red seabream diet 
is dependent on several factors such as feeding rate (Takii et al., 
1997), photoperiod (Biswas et al., 2005) and stocking density 
(Biswas et al., 2007). Dossou et al. (2018) reported that FM 
could be substituted up to 25% with fermented rapeseed meal 
without compromising digestibility of protein in red seabream 
diet. However, LFM diet showed significantly lower protein 
digestibility in the present study indicating that SPC was not 
capable to replace FM in red seabream diet down to 25% with-
out compromising protein digestibility. SH and KM groups 
restored the HFM effects by increasing diet digestibility. Kader 
and Koshio (2012) improved diet digestibility by incorporating 
20% of FM with fermented soybean meal and fish soluble in red 
seabream diet. Protein and AA digestibility of red seabream vary 
with protein sources in diet (Yamamoto et al., 1998). Therefore, 
in line with these findings, it can be assumed that proper level of 
SH was included in a LFM diet for red seabream possessing an 
ability to enhance protein and DM digestibility of the diet. KM 
supplementation was reported increased digestibility of no-FM 
diet for Nile tilapia (Oreochromis niloticus) (Gaber, 2005). Tib-
betts et al. (2006) observed that protein digestibility of Atlantic 
cod (Gadus morhua) was improved by KM supplementation. 
However, in our study, protein and DM digestibility were higher 
in SH diet than that of KM diet. Nutritional quality of SH, espe-
cially higher levels of low molecular weight compounds, seems 
to be the main reason for the improved protein digestibility of 
diet compared to KM or HFM diets.

Innate immune system is considered as the core defense 
mechanism found in fish for combating infections (Magnadóttir, 
2006). In the present study, NBT activity and antioxidant en-
zymes such as serum catalase, SOD and GPx activities were sig-
nificantly enhanced by dietary inclusion of SH or KM in a LFM 

diet. SH supplementation resulted in even higher performance 
than HFM group. According to our previous studies, innate 
immunity of red seabream was boosted by SH incorporation 
into a LFM diet restoring the positive HFM effects (Khosravi 
et al., 2015a). Innate immune system of olive flounder was also 
stimulated by dietary SH (Gunathilaka et al., 2020; Khoshravi 
et al., 2018) and KM (Tharaka et al., 2020) supplementation. In-
nate immunity of Japanese sea bass (Lateolabrax japonicas) and 
Atlantic halibut (Hippoglossus hippoglossus) was enhanced by 
dietary supplementation of hydrolysates from Pollock by-prod-
uct (Hermannsdottir et al., 2009; Liang et al., 2006). Siddik et al. 
(2019) reported that immune responses of Asian seabass (Lates 
calcarifer) can be improved by tuna hydrolysates supplementa-
tion in diets. Immunostimulatory effects of different hydroly-
sates products have been revealed over past decade (Chalamaiah 
et al., 2015; Chalamaiah et al., 2018; Huang et al., 2014; Karn-
janapratum et al., 2016). Dietary AAs were reported to boost 
immunity and antioxidant enzyme activities of fishes (Machado 
et al., 2015; Pohlenz et al., 2012). Both SH and KM contain high 
levels of AAs although the SH contained high soluble nitrogen 
level and low-molecular compounds than KM. Therefore, SH 
might contain nucleotides and peptides among low molecular 
weight compounds. Both nucleotides and peptides were identi-
fied as immune modulators in animals including fishes (Ceder-
lund et al., 2011; Chiou et al., 2006; de Cruz et al., 2020; Harris 
and Bird, 2000; Rajanbabu and Chen, 2011; Valero et al., 2020). 
Therefore, innate immunity of red seabream might be boosted 
more efficiently by dietary SH supplementation compared to 
KM which was not hydrolyzed. Evidences from previous stud-
ies elucidated that chitin present in KM have ability to improve 
immunity of fish (Ringø et al., 2012). Several studies reported 
that chitin improve disease resistance of fish along with the 
immunity (Ringø et al., 2012). Improved immunity is properly 
reflected by a disease challenge against virulent pathogen in 
red seabream aquaculture. Therefore, we suggest to conduct 
immune based challenge test in future experiments to illustrate 
immune boosting effects of LFM diets containing SH and KM. 

Blood hematocrit and hemoglobin level of fish significantly 
improved by dietary KM and SH supplementation compared to 
LFM group. Olsen et al. (2006) reported that dietary KM sup-
plementation had no adverse effects on hematocrit, hemoglobin 
or red blood cell count of Atlantic salmon. Also, Silva-Carrillo 
et al. (2012) replaced FM from juvenile spotted rose snapper 
(Lutjanus guttatus) diet with soybean meal up to 60% without 
adverse effects on hematocrit and hemoglobin level when diets 
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were supplemented with KM and Squid meal. Khosravi et al. 
(2015a) observed increment in blood hemoglobin and hemato-
crit by dietary SH supplementation. High level of plant protein 
in diets causes to reduce hemoglobin level and hematocrit of 
fish (Haghbayan et al., 2015). Accordingly, in our study, blood 
hemoglobin level and hematocrit were reduced by LFM diet 
due to high level of SPC and increased by KM and SH to reach 
HFM effects. The improved nutritional status as represented by 
growth performance, feed utilization and diet digestibility of SH 
and KM group might be connected with restored hemoglobin 
and hematocrit levels. 

Conclusion

The results observed by this study provide evidences to prove 
that the 20% of FM inclusion in red seabream diet with KM is 
comparable to a HFM diet which contain 40% FM. Also, com-
pared to KM, SH can be used to replace FM from red seabream 
diet down to 20% and fish performance can be maintained 
better than a diet containing 40% FM. Therefore, inclusion of 
SH in LFM diet is more effective than KM to improve growth, 
digestibility and immunity of red seabream.
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